2019 - 2020 | |||||||||||||||||||||||||||||
0555-1140-01 | Probability for Biomedical engineering | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FACULTY OF ENGINEERING | |||||||||||||||||||||||||||||
|
Contents
|
|
1
|
Basics of probability: Probability Space, Sets, Events
|
2
|
Combinatory: n! , n over k, Probabilities over a symmetric sample space
|
3
|
Conditional probability: Bayes' theorem, Dependent and independent events
|
4
|
Random variables: Definitions of Discrete and continuous random variables
|
5
|
Random variables (cont.): Expectation, Variance
|
6
|
Random variables (cont.): special random variables – binom, geometric, hyper-geometric, Poisson (and Poisson process), exponential, Normal
|
7
|
Joint Distributions: Joint Distributions, Independent variables
|
8
|
Joint Distribution(cont): Conditional distributions, conditional expectation and variance Covariance, Pearson Correlation
|
9
|
Functions of several variables: Functions of several variables, sum of variables, expectation of sum of variables
|
10
|
Covariance: Variance of sum of variables, covariance, Pearson Correlation
|
11
|
More Random variables: bi-normal distribution, chi-square distribution, F-distribution
|
12
|
Central Limit Theorem: More on the Normal Distribution, , t-distribution
|
13
|
Distribution of Mean and Variance of a sample
|