2016 - 2017 | |||||||||||||||||||||||||||||
0510-6202-01 | Estimation Theory | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FACULTY OF ENGINEERING | |||||||||||||||||||||||||||||
|
· Overview of the parameter estimation problem
· Estimation in parametric families:
o Minimum variance unbiased estimation
o Fisher information and the Cramer-Rao lower bound
o Linear models: Linear regression and best linear unbiased estimation
o Sufficient statistics: The Neyman-Fisher factorization Theorem; the Rao-Blackwell-Lehmann-Scheffe Theorem; exponential families
o Maximum likelihood estimation and its asymptotic properties
o Maximum spacing estimation
o The least squares approach
· Bayesian estimation:
o MMSE estimation
o Maximum A-Posteriori estimation and conjugate priors
o Linear MMSE estimation, Wiener filtering
o Kalman filtering
· Algorithms:
o Sequential estimation
o Expectation—Maximization and Alternating—Minimization
· Detection theory:
o The Bayesian approach
o The Neyman-Pearson Approach
o Composite hypothesis testing
· Advanced topics
o Regularization techniques and sparse models
o Robust estimation
o Minimax estimators