2019 - 2020

0366-2132   Algebra B 1                                                                                          
FACULTY OF EXACT SCIENCES
View groups
 
Course description

                                                 "Algebra B-1" - 0366213201

 

 

                                (2012-13, spring semester)

 

 

                                           Lecturer: Prof. E. Shustin

 

 

 

 

 

 

 

 

 Algebraic structures1

Monoid, commutative monoid, group, commutative (abelian) group, ring, field. Examples.

  Subgroup. Homomorphism. Isomorphism2

 

 

Subgroup, generators, cosets, index of a subgroup, Lagrange's theorem. Cauchy's theorem. Homomorphism, kernel, and image of a homomorphism, isomorphism. Cyclic group, Fermat's little theorem. Examples: symmetric group, group of units of a commutative ring, multiplicative group of a field and its subgroups.

3. Normal subgroups

 

 

Normal subgroup and quotient group. Normal subgroups and homomorphisms. The main theorem on homomorphisms. Normalizer and centralizer. Center of a group. Product of subgroups. Examples: alternating subgroup of symmetric group. Simple groups.

4. Theorems on isomorphisms

 

 

Theorems on isomorphisms. Noether's theorem. Zassenhaus' theorem.

5. Group actions

 

 

Group actions on itself. Cayley's theorem. Conjugation. Group action on a set. Orbit, stabilizer. The class formula: Applications.

6. Sylow's theorems

 

 

p-groups. Three Sylow's theorems and their applications.

7. Category of groups

Category. Category with products and coproducts. Free groups.

8. Abelian groups

 

 

Direct product and internal direct product. Abelian $p$-groups Free abelian group. Torsion. Structure theorem for finitely generated abelian groups. Applications.

9. Classification of finite groups

 

 

Classification of groups up to order 60.

10. Solvable groups

 

 

Commutator, commutant. Submormal series. Solvable groups.

11. Composition series

 

 

Composition series. Schreier's theorem. Jordan-H\"older theorem.

 

 

Prerequisites: Linear Algebra 1,2 

 

 

                                 סמסטר א', תשע''ג

 

 

 

המרצה: פרופ' י. שוסטין

 

 

1.     מבנים אלגבריים

 

מונויד, מונויד חילופי, חבורה, חבורה אבלית (חילופית), חוג, שדה. דוגמאות.

 

2.     תת-חבורה, הומומורפיזם, איזומורפיזם

 

תת-חבורה, יוצרים, מחלקות לוואי, אינדקס. משפטי Lagrange  ו- Cauchy. הומומורפיזם, גרעין ותמונה, איזומורפיזם. חבורה מעגלית. משפט Fermat הקטן. דוגמאות: חבורה סימטרית, חבורת יחידות של חוג, חבורה חיבורית וכיפלית של שדה.

 

3.     תת-חבורה נורמלית

 

תת-חבורה נורמלית חבורת-מנה.  תת-חבורות נורמליות והומומורפיזמים. המשפט היסודי על הומומורפיזמים. מנרמל ומרכז. מרכז של חבורה. מכפלת תת-חבורות. דוגמאות: תת-חבורה מתחלפת של חבורה סימטרית, חבורה ראשונית.

 

4.     משפטי איזומורפיזם

 

משפטי איזומורפיזם. משפטי  Noether ו- Zassenhaus.

 

5.     פעולה של חבורה

 

פעולות חבורה בעצמה. משפט Cayley. הצמדה. פעולת חבורה בקבוצה. מסלול, משמר. נוסחת מחלקות ויישומיה.

 

6.     משפטי Sylow

 

חבורות -  p. משפטי Sylow ויישומיהם.

 

7.     קטגורית חבורות

 

קטגוריה. קטגוריה עם מכפלות וקומכפלות. חבורה חופשית.

 

8.     חבורות אבליות

 

מכפלה ישרה חיצונית ופנימית. תבורות – p אבליות. חבורה אבלית חופשית. פיתול.  מבנה של חבורות אבליות נוצרות סופית. יישומים.

 

9.     מיון חבורות סופיות.

 

מיון חבורות עד לסדר 60.

 

10.                         חבורות פתירות.

 

קומוטטור וקומוטנט.  סדרות  תת-נורמליות. חבורות פתירות.

 

11.                        סדרות הרכב.

 

סדרות הרכב. משפטי Schreier ו- Jordan-Hoelder

 

דרישות מוקדמות:

 

אלגברה ליניארית 1,2.

 

ספרי לימוד:

 

M. Artin. Algebra. Prentice Hall, Englewood Cliffs, NJ, 1991.

 

S. Lang. Algebra. Addison-Wesley, Reading, MA, 1965.

L. Rowen. {\it Algebra: Groups, Rings, Fields}. A. K. Peters-Wellesley, MA, 1994

 

 

 

Bibliography:

 

 

M. Artin. Algebra. Prentice Hall, Englewood Cliffs, NJ, 1991.

 

 

S. Lang. Algebra. Addison-Wesley, Reading, MA, 1965.

L. Rowen. {\it Algebra: Groups, Rings, Fields}. A. K. Peters-Wellesley, MA, 1994.

 

 

accessibility declaration


tel aviv university