שנה"ל תשע"ח

0366-1100-01
 חשבון דיפרנציאלי ואינטגרלי 1א לפיזיקאים
 Calculus 1a for Physicists
מר סגל אלכסשיעור כיתות דן דוד001 ג'1400-1200 סמ'  א'
שיעור כיתות דן דוד002 ה'1300-1100 סמ'  א'
חדו"א 1א' לפיזיקאים - סילבוס
1. מושגים בסיסיים בתורת הקבוצות ובלוגיקה
2. מספרים טבעיים, שלמים ורציונליים כולל מושג השקילות ואינדוקציה
3. מספרים ממשיים סופרמום ואינפימום
4. סדרות ומושג הגבול, סדרות קושי, הלמה של קנטור, לימסופ ולימאינפ
5. פונקציות, חד-חד ועל, מונוטוניות, גבולות לפי קושי ולפי היינה, רציפות, רציפות במידה שווה
6. נגזרות
7. המשפטים היסודיים של חשבון דיפרנציאל: משפטי ערך ממוצע, לופיטל ונוסחת טיילור
8. חקירת פונקציה
9.האינטגרל הלא מסוים
10. אינגרל מסוים, סכומי דרבו, האינטגרל של רימן
 
0366-1100-02
 חשבון דיפרנציאלי ואינטגרלי 1א לפיזיקאים
 Calculus 1a for Physicists
גב' סדובסקי שיתרגיל שרייבר מתמטי006 ה'1600-1300 סמ'  א'
 
0366-1100-03
 חשבון דיפרנציאלי ואינטגרלי 1א לפיזיקאים
 Calculus 1a for Physicists
מר קרין אופירתרגיל פיזיקה-שנקר204 ה'1600-1300 סמ'  א'
 
0366-1101-01
 חשבון דיפרנציאלי ואינטגרלי 1א
 Calculus 1a
פרופ אוסטרובר ירוןשיעור כיתות דן דוד001 ה'1500-1300 סמ'  א'
שיעור דאך005 ג'1500-1300 סמ'  א'

 

 

1. מספרים ממשיים. סופרמום. קבוצות בנות מנייה.
2. סדרות. התכנסות והתבדרות. סדרות חסומות. תתי-סדרות
מתכנסת. גבולות תחתונים ועליונים. סדרות קושי. טורים אינסופיים.
התכנסות בהחלט.
3. פונקציות של משתנה ממשי. גבולות של פונקציות. רציפות.
משפט ערך הביניים. משפט ויירשטראס לגבי מקסימום של פונקציה.
רציפות במידה שווה.
4. הנגזרת. נגזרות מסדר גבוה. משפטי ערך ממוצע. כלל לופיטל. קמירות.
5. פולינומי טיילור עם שארית. פיתוח לטור חזקות של פונקציות אלמנטריות.

 

 

 
0366-1101-02
 חשבון דיפרנציאלי ואינטגרלי 1א
 Calculus 1a
מר איילי נחשון יעקבתרגיל פיזיקה-שנקר204 א'1600-1500 סמ'  א'
תרגיל פיזיקה-שנקר204 ב'1600-1400 סמ'  א'

 

 

1. מספרים ממשיים. סופרמום. קבוצות בנות מנייה.
2. סדרות. התכנסות והתבדרות. סדרות חסומות. תתי-סדרות
מתכנסת. גבולות תחתונים ועליונים. סדרות קושי. טורים אינסופיים.
התכנסות בהחלט.
3. פונקציות של משתנה ממשי. גבולות של פונקציות. רציפות.
משפט ערך הביניים. משפט ויירשטראס לגבי מקסימום של פונקציה.
רציפות במידה שווה.
4. הנגזרת. נגזרות מסדר גבוה. משפטי ערך ממוצע. כלל לופיטל. קמירות.
5. פולינומי טיילור עם שארית. פיתוח לטור חזקות של פונקציות אלמנטריות.

 

 

 
0366-1101-03
 חשבון דיפרנציאלי ואינטגרלי 1א
 Calculus 1a
מר ראוך איתמרתרגיל שרייבר מתמטי006 ה'2000-1700 סמ'  א'

 

 

1. מספרים ממשיים. סופרמום. קבוצות בנות מנייה.
2. סדרות. התכנסות והתבדרות. סדרות חסומות. תתי-סדרות
מתכנסת. גבולות תחתונים ועליונים. סדרות קושי. טורים אינסופיים.
התכנסות בהחלט.
3. פונקציות של משתנה ממשי. גבולות של פונקציות. רציפות.
משפט ערך הביניים. משפט ויירשטראס לגבי מקסימום של פונקציה.
רציפות במידה שווה.
4. הנגזרת. נגזרות מסדר גבוה. משפטי ערך ממוצע. כלל לופיטל. קמירות.
5. פולינומי טיילור עם שארית. פיתוח לטור חזקות של פונקציות אלמנטריות.

 

 

 
0366-1101-04
 חשבון דיפרנציאלי ואינטגרלי 1א
 Calculus 1a
מר רוזן דניאלתרגיל פיזיקה-שנקר204 ב'1700-1600 סמ'  א'
תרגיל פיזיקה-שנקר222 ד'1800-1600 סמ'  א'

 

 

1. מספרים ממשיים. סופרמום. קבוצות בנות מנייה.
2. סדרות. התכנסות והתבדרות. סדרות חסומות. תתי-סדרות
מתכנסת. גבולות תחתונים ועליונים. סדרות קושי. טורים אינסופיים.
התכנסות בהחלט.
3. פונקציות של משתנה ממשי. גבולות של פונקציות. רציפות.
משפט ערך הביניים. משפט ויירשטראס לגבי מקסימום של פונקציה.
רציפות במידה שווה.
4. הנגזרת. נגזרות מסדר גבוה. משפטי ערך ממוצע. כלל לופיטל. קמירות.
5. פולינומי טיילור עם שארית. פיתוח לטור חזקות של פונקציות אלמנטריות.

 

 

 
0366-1101-06
 חשבון דיפרנציאלי ואינטגרלי 1א
 Calculus 1a
ד"ר אידלמן יולישיעור כיתות דן דוד001 ה'1300-1100 סמ'  א'
שיעור דאך005 ג'1200-1000 סמ'  א'

 

 

1. מספרים ממשיים. סופרמום. קבוצות בנות מנייה.
2. סדרות. התכנסות והתבדרות. סדרות חסומות. תתי-סדרות
מתכנסת. גבולות תחתונים ועליונים. סדרות קושי. טורים אינסופיים.
התכנסות בהחלט.
3. פונקציות של משתנה ממשי. גבולות של פונקציות. רציפות.
משפט ערך הביניים. משפט ויירשטראס לגבי מקסימום של פונקציה.
רציפות במידה שווה.
4. הנגזרת. נגזרות מסדר גבוה. משפטי ערך ממוצע. כלל לופיטל. קמירות.
5. פולינומי טיילור עם שארית. פיתוח לטור חזקות של פונקציות אלמנטריות.

 

 

0366-1101-07
 חשבון דיפרנציאלי ואינטגרלי 1א
 Calculus 1a
מר שבתאי אודתרגיל פיזיקה-שנקר104 ד'1400-1300 סמ'  א'
תרגיל פיזיקה-שנקר204 א'1200-1000 סמ'  א'

 

 

1. מספרים ממשיים. סופרמום. קבוצות בנות מנייה.
2. סדרות. התכנסות והתבדרות. סדרות חסומות. תתי-סדרות
מתכנסת. גבולות תחתונים ועליונים. סדרות קושי. טורים אינסופיים.
התכנסות בהחלט.
3. פונקציות של משתנה ממשי. גבולות של פונקציות. רציפות.
משפט ערך הביניים. משפט ויירשטראס לגבי מקסימום של פונקציה.
רציפות במידה שווה.
4. הנגזרת. נגזרות מסדר גבוה. משפטי ערך ממוצע. כלל לופיטל. קמירות.
5. פולינומי טיילור עם שארית. פיתוח לטור חזקות של פונקציות אלמנטריות.

 

 

0366-1101-08
 חשבון דיפרנציאלי ואינטגרלי 1א
 Calculus 1a
מר לונדנר איתיתרגיל שרייבר מתמטי006 ד'1600-1400 סמ'  א'
תרגיל כיתות דן דוד001 ה'1100-1000 סמ'  א'

 

 

1. מספרים ממשיים. סופרמום. קבוצות בנות מנייה.
2. סדרות. התכנסות והתבדרות. סדרות חסומות. תתי-סדרות
מתכנסת. גבולות תחתונים ועליונים. סדרות קושי. טורים אינסופיים.
התכנסות בהחלט.
3. פונקציות של משתנה ממשי. גבולות של פונקציות. רציפות.
משפט ערך הביניים. משפט ויירשטראס לגבי מקסימום של פונקציה.
רציפות במידה שווה.
4. הנגזרת. נגזרות מסדר גבוה. משפטי ערך ממוצע. כלל לופיטל. קמירות.
5. פולינומי טיילור עם שארית. פיתוח לטור חזקות של פונקציות אלמנטריות.

 

 

0366-1101-12
 חשבון דיפרנציאלי ואינטגרלי 1א
 Calculus 1a
ד"ר יעקובוב יעקובשיעור א'1200-1000 סמ'  ב'
שיעור ה'1200-1000 סמ'  ב'

   1. קבוצות, פונקציות, המספרים הטבעיים, קבוצות בנות מניה.
   2. קבוצות ושדות סדורות, המספרים הרציונליים והממשיים והמרוכבים.
   3. חסם מלעל מזערי וחסם מלרע מרבי של קבוצות של מספרים ממשיים.
4 . גבול של סדרה, גבולות חלקיים, סדרת קושי.
   5. התכנסות טורים, קטע התכנסות של טור חזקות.
    6. פונקציה של משתנה ממשי,  גבול של --, רציפות של --, רציפות במ"ש.
       7. מקסימום של פונקציה רציפה על קבוצה סגורה וחסומה  ורציפותה במ"ש.
       8. נגזרות. רציפות ללא גזירות. ערך ממוצע. קמירות. קירוב טיילור. כלל לופיטל.
       9. פונקציות אלמנטריות כטורי חזקות.

0366-1101-13
 חשבון דיפרנציאלי ואינטגרלי 1א
 Calculus 1a
מר כץ רםתרגיל ד'1600-1300 סמ'  ב'

 

 

1. מספרים ממשיים. סופרמום. קבוצות בנות מנייה.
2. סדרות. התכנסות והתבדרות. סדרות חסומות. תתי-סדרות
מתכנסת. גבולות תחתונים ועליונים. סדרות קושי. טורים אינסופיים.
התכנסות בהחלט.
3. פונקציות של משתנה ממשי. גבולות של פונקציות. רציפות.
משפט ערך הביניים. משפט ויירשטראס לגבי מקסימום של פונקציה.
רציפות במידה שווה.
4. הנגזרת. נגזרות מסדר גבוה. משפטי ערך ממוצע. כלל לופיטל. קמירות.
5. פולינומי טיילור עם שארית. פיתוח לטור חזקות של פונקציות אלמנטריות.

 

 

0366-1102-01
 חשבון דיפרנציאלי ואינטגרלי 2א
 Calculus 2a
ד"ר יעקובוב יעקובשיעור כיתות דן דוד002 ג'1400-1200 סמ'  א'
שיעור אוד' מלמד006 ב'1600-1400 סמ'  א'
1. אינטגרל רימן, הגדרה ותכונות בסיסיות. המשפט היסודי 
של החשבון הדיפרנציאלי ואינטגרלי (משפט ניוטון-ליבניץ). אינטגרציה בחלקים. החלפת
משתנים. אינטגרל בלתי מסויים. אורך של עקום.
2. התכנסות במידה שווה של סדרות וטורי פונקציות. רציפות הגבול.
משפט התכנסות במידה שווה עבור האינטגרל. משפט השוואה להתכנסות
טורים במידה שווה (M-בוחן). משפט ויירשטראס על קירוב במידה שווה ע"י פולינומים.
3. טורים מרוכבים. הכפלת טורים. רדיוס התכנסות של טורי חזקות. 
קריטריון אבל-דיריכלה להתכנסות. משפט אבל על רציפות טורי חזקות.
4. טור פורייה. הלמה של רימן-לבג. גרעין דיריכלה, גרעין פייר. התכנסות
של טורי פורייה. משפט פייר, התכנסות בממוצע. נוסחת פרסבל. 
5. מרחבים סוף-מימדיים. קבוצות פתוחות וסגורות. התכנסות.
פונקציות רציפות.
6. דיפרנציאביליות. נגזרות חלקיות. כלל השרשרת. נגזרות כיווניות, 
גרדיאנט, קווי גובה. נגזרות חלקיות רציפות ודיפרנציאביליות. תכונת
ערך הביניים.
7. נגזרות חלקיות מסדר גבוה. משפט הנגזרות המעורבות. פולינומי טיילור.
מיון נקודות סטציונריות. 
0366-1102-02
 חשבון דיפרנציאלי ואינטגרלי 2א
 Calculus 2a
מר ליבנה בר-און אוהדתרגיל אורנשטיין103 ה'1800-1700 סמ'  א'
תרגיל אורנשטיין111 ג'1600-1400 סמ'  א'
1. אינטגרל רימן, הגדרה ותכונות בסיסיות. המשפט היסודי 
של החשבון הדיפרנציאלי ואינטגרלי (משפט ניוטון-ליבניץ). אינטגרציה בחלקים. החלפת
משתנים. אינטגרל בלתי מסויים. אורך של עקום.
2. התכנסות במידה שווה של סדרות וטורי פונקציות. רציפות הגבול.
משפט התכנסות במידה שווה עבור האינטגרל. משפט השוואה להתכנסות
טורים במידה שווה (M-בוחן). משפט ויירשטראס על קירוב במידה שווה ע"י פולינומים.
3. טורים מרוכבים. הכפלת טורים. רדיוס התכנסות של טורי חזקות. 
קריטריון אבל-דיריכלה להתכנסות. משפט אבל על רציפות טורי חזקות.
4. טור פורייה. הלמה של רימן-לבג. גרעין דיריכלה, גרעין פייר. התכנסות
של טורי פורייה. משפט פייר, התכנסות בממוצע. נוסחת פרסבל. 
5. מרחבים סוף-מימדיים. קבוצות פתוחות וסגורות. התכנסות.
פונקציות רציפות.
6. דיפרנציאביליות. נגזרות חלקיות. כלל השרשרת. נגזרות כיווניות, 
גרדיאנט, קווי גובה. נגזרות חלקיות רציפות ודיפרנציאביליות. תכונת
ערך הביניים.
7. נגזרות חלקיות מסדר גבוה. משפט הנגזרות המעורבות. פולינומי טיילור.
מיון נקודות סטציונריות. 
0366-1102-03
 חשבון דיפרנציאלי ואינטגרלי 2א
 Calculus 2a
פרופ ארטשטיין שירישיעור ב'1000-0800 סמ'  ב'
שיעור ה'1200-1000 סמ'  ב'
1. אינטגרל רימן, הגדרה ותכונות בסיסיות. המשפט היסודי 
של החשבון הדיפרנציאלי ואינטגרלי (משפט ניוטון-ליבניץ). אינטגרציה בחלקים. החלפת
משתנים. אינטגרל בלתי מסויים. אורך של עקום.
2. התכנסות במידה שווה של סדרות וטורי פונקציות. רציפות הגבול.
משפט התכנסות במידה שווה עבור האינטגרל. משפט השוואה להתכנסות
טורים במידה שווה (M-בוחן). משפט ויירשטראס על קירוב במידה שווה ע"י פולינומים.
3. טורים מרוכבים. הכפלת טורים. רדיוס התכנסות של טורי חזקות. 
קריטריון אבל-דיריכלה להתכנסות. משפט אבל על רציפות טורי חזקות.
4. טור פורייה. הלמה של רימן-לבג. גרעין דיריכלה, גרעין פייר. התכנסות
של טורי פורייה. משפט פייר, התכנסות בממוצע. נוסחת פרסבל. 
5. מרחבים סוף-מימדיים. קבוצות פתוחות וסגורות. התכנסות.
פונקציות רציפות.
6. דיפרנציאביליות. נגזרות חלקיות. כלל השרשרת. נגזרות כיווניות, 
גרדיאנט, קווי גובה. נגזרות חלקיות רציפות ודיפרנציאביליות. תכונת
ערך הביניים.
7. נגזרות חלקיות מסדר גבוה. משפט הנגזרות המעורבות. פולינומי טיילור.
מיון נקודות סטציונריות. 
0366-1102-04
 חשבון דיפרנציאלי ואינטגרלי 2א
 Calculus 2a
מר לונדנר איתיתרגיל א'1300-1000 סמ'  ב'
1. אינטגרל רימן, הגדרה ותכונות בסיסיות. המשפט היסודי 
של החשבון הדיפרנציאלי ואינטגרלי (משפט ניוטון-ליבניץ). אינטגרציה בחלקים. החלפת
משתנים. אינטגרל בלתי מסויים. אורך של עקום.
2. התכנסות במידה שווה של סדרות וטורי פונקציות. רציפות הגבול.
משפט התכנסות במידה שווה עבור האינטגרל. משפט השוואה להתכנסות
טורים במידה שווה (M-בוחן). משפט ויירשטראס על קירוב במידה שווה ע"י פולינומים.
3. טורים מרוכבים. הכפלת טורים. רדיוס התכנסות של טורי חזקות. 
קריטריון אבל-דיריכלה להתכנסות. משפט אבל על רציפות טורי חזקות.
4. טור פורייה. הלמה של רימן-לבג. גרעין דיריכלה, גרעין פייר. התכנסות
של טורי פורייה. משפט פייר, התכנסות בממוצע. נוסחת פרסבל. 
5. מרחבים סוף-מימדיים. קבוצות פתוחות וסגורות. התכנסות.
פונקציות רציפות.
6. דיפרנציאביליות. נגזרות חלקיות. כלל השרשרת. נגזרות כיווניות, 
גרדיאנט, קווי גובה. נגזרות חלקיות רציפות ודיפרנציאביליות. תכונת
ערך הביניים.
7. נגזרות חלקיות מסדר גבוה. משפט הנגזרות המעורבות. פולינומי טיילור.
מיון נקודות סטציונריות. 
0366-1102-05
 חשבון דיפרנציאלי ואינטגרלי 2א
 Calculus 2a
מר רוזן דניאלתרגיל א'1000-0900 סמ'  ב'
תרגיל ג'1400-1200 סמ'  ב'
1. אינטגרל רימן, הגדרה ותכונות בסיסיות. המשפט היסודי 
של החשבון הדיפרנציאלי ואינטגרלי (משפט ניוטון-ליבניץ). אינטגרציה בחלקים. החלפת
משתנים. אינטגרל בלתי מסויים. אורך של עקום.
2. התכנסות במידה שווה של סדרות וטורי פונקציות. רציפות הגבול.
משפט התכנסות במידה שווה עבור האינטגרל. משפט השוואה להתכנסות
טורים במידה שווה (M-בוחן). משפט ויירשטראס על קירוב במידה שווה ע"י פולינומים.
3. טורים מרוכבים. הכפלת טורים. רדיוס התכנסות של טורי חזקות. 
קריטריון אבל-דיריכלה להתכנסות. משפט אבל על רציפות טורי חזקות.
4. טור פורייה. הלמה של רימן-לבג. גרעין דיריכלה, גרעין פייר. התכנסות
של טורי פורייה. משפט פייר, התכנסות בממוצע. נוסחת פרסבל. 
5. מרחבים סוף-מימדיים. קבוצות פתוחות וסגורות. התכנסות.
פונקציות רציפות.
6. דיפרנציאביליות. נגזרות חלקיות. כלל השרשרת. נגזרות כיווניות, 
גרדיאנט, קווי גובה. נגזרות חלקיות רציפות ודיפרנציאביליות. תכונת
ערך הביניים.
7. נגזרות חלקיות מסדר גבוה. משפט הנגזרות המעורבות. פולינומי טיילור.
מיון נקודות סטציונריות. 
0366-1102-06
 חשבון דיפרנציאלי ואינטגרלי 2א
 Calculus 2a
ד"ר שצירבק אינהשיעור ג'1600-1400 סמ'  ב'
שיעור ה'1400-1200 סמ'  ב'
1. אינטגרל רימן, הגדרה ותכונות בסיסיות. המשפט היסודי 
של החשבון הדיפרנציאלי ואינטגרלי (משפט ניוטון-ליבניץ). אינטגרציה בחלקים. החלפת
משתנים. אינטגרל בלתי מסויים. אורך של עקום.
2. התכנסות במידה שווה של סדרות וטורי פונקציות. רציפות הגבול.
משפט התכנסות במידה שווה עבור האינטגרל. משפט השוואה להתכנסות
טורים במידה שווה (M-בוחן). משפט ויירשטראס על קירוב במידה שווה ע"י פולינומים.
3. טורים מרוכבים. הכפלת טורים. רדיוס התכנסות של טורי חזקות. 
קריטריון אבל-דיריכלה להתכנסות. משפט אבל על רציפות טורי חזקות.
4. טור פורייה. הלמה של רימן-לבג. גרעין דיריכלה, גרעין פייר. התכנסות
של טורי פורייה. משפט פייר, התכנסות בממוצע. נוסחת פרסבל. 
5. מרחבים סוף-מימדיים. קבוצות פתוחות וסגורות. התכנסות.
פונקציות רציפות.
6. דיפרנציאביליות. נגזרות חלקיות. כלל השרשרת. נגזרות כיווניות, 
גרדיאנט, קווי גובה. נגזרות חלקיות רציפות ודיפרנציאביליות. תכונת
ערך הביניים.
7. נגזרות חלקיות מסדר גבוה. משפט הנגזרות המעורבות. פולינומי טיילור.
מיון נקודות סטציונריות. 
0366-1102-07
 חשבון דיפרנציאלי ואינטגרלי 2א
 Calculus 2a
גב' עמיר מיכלתרגיל א'1000-0900 סמ'  ב'
תרגיל ה'1200-1000 סמ'  ב'
1. אינטגרל רימן, הגדרה ותכונות בסיסיות. המשפט היסודי 
של החשבון הדיפרנציאלי ואינטגרלי (משפט ניוטון-ליבניץ). אינטגרציה בחלקים. החלפת
משתנים. אינטגרל בלתי מסויים. אורך של עקום.
2. התכנסות במידה שווה של סדרות וטורי פונקציות. רציפות הגבול.
משפט התכנסות במידה שווה עבור האינטגרל. משפט השוואה להתכנסות
טורים במידה שווה (M-בוחן). משפט ויירשטראס על קירוב במידה שווה ע"י פולינומים.
3. טורים מרוכבים. הכפלת טורים. רדיוס התכנסות של טורי חזקות. 
קריטריון אבל-דיריכלה להתכנסות. משפט אבל על רציפות טורי חזקות.
4. טור פורייה. הלמה של רימן-לבג. גרעין דיריכלה, גרעין פייר. התכנסות
של טורי פורייה. משפט פייר, התכנסות בממוצע. נוסחת פרסבל. 
5. מרחבים סוף-מימדיים. קבוצות פתוחות וסגורות. התכנסות.
פונקציות רציפות.
6. דיפרנציאביליות. נגזרות חלקיות. כלל השרשרת. נגזרות כיווניות, 
גרדיאנט, קווי גובה. נגזרות חלקיות רציפות ודיפרנציאביליות. תכונת
ערך הביניים.
7. נגזרות חלקיות מסדר גבוה. משפט הנגזרות המעורבות. פולינומי טיילור.
מיון נקודות סטציונריות. 
0366-1102-08
 חשבון דיפרנציאלי ואינטגרלי 2א
 Calculus 2a
גב' טנאי שירהתרגיל ה'2000-1700 סמ'  ב'
1. אינטגרל רימן, הגדרה ותכונות בסיסיות. המשפט היסודי 
של החשבון הדיפרנציאלי ואינטגרלי (משפט ניוטון-ליבניץ). אינטגרציה בחלקים. החלפת
משתנים. אינטגרל בלתי מסויים. אורך של עקום.
2. התכנסות במידה שווה של סדרות וטורי פונקציות. רציפות הגבול.
משפט התכנסות במידה שווה עבור האינטגרל. משפט השוואה להתכנסות
טורים במידה שווה (M-בוחן). משפט ויירשטראס על קירוב במידה שווה ע"י פולינומים.
3. טורים מרוכבים. הכפלת טורים. רדיוס התכנסות של טורי חזקות. 
קריטריון אבל-דיריכלה להתכנסות. משפט אבל על רציפות טורי חזקות.
4. טור פורייה. הלמה של רימן-לבג. גרעין דיריכלה, גרעין פייר. התכנסות
של טורי פורייה. משפט פייר, התכנסות בממוצע. נוסחת פרסבל. 
5. מרחבים סוף-מימדיים. קבוצות פתוחות וסגורות. התכנסות.
פונקציות רציפות.
6. דיפרנציאביליות. נגזרות חלקיות. כלל השרשרת. נגזרות כיווניות, 
גרדיאנט, קווי גובה. נגזרות חלקיות רציפות ודיפרנציאביליות. תכונת
ערך הביניים.
7. נגזרות חלקיות מסדר גבוה. משפט הנגזרות המעורבות. פולינומי טיילור.
מיון נקודות סטציונריות. 
0366-1102-09
 חשבון דיפרנציאלי ואינטגרלי 2א
 Calculus 2a
גב' ברוך אורתרגיל א'1000-0900 סמ'  ב'
תרגיל ה'1200-1000 סמ'  ב'
1. אינטגרל רימן, הגדרה ותכונות בסיסיות. המשפט היסודי 
של החשבון הדיפרנציאלי ואינטגרלי (משפט ניוטון-ליבניץ). אינטגרציה בחלקים. החלפת
משתנים. אינטגרל בלתי מסויים. אורך של עקום.
2. התכנסות במידה שווה של סדרות וטורי פונקציות. רציפות הגבול.
משפט התכנסות במידה שווה עבור האינטגרל. משפט השוואה להתכנסות
טורים במידה שווה (M-בוחן). משפט ויירשטראס על קירוב במידה שווה ע"י פולינומים.
3. טורים מרוכבים. הכפלת טורים. רדיוס התכנסות של טורי חזקות. 
קריטריון אבל-דיריכלה להתכנסות. משפט אבל על רציפות טורי חזקות.
4. טור פורייה. הלמה של רימן-לבג. גרעין דיריכלה, גרעין פייר. התכנסות
של טורי פורייה. משפט פייר, התכנסות בממוצע. נוסחת פרסבל. 
5. מרחבים סוף-מימדיים. קבוצות פתוחות וסגורות. התכנסות.
פונקציות רציפות.
6. דיפרנציאביליות. נגזרות חלקיות. כלל השרשרת. נגזרות כיווניות, 
גרדיאנט, קווי גובה. נגזרות חלקיות רציפות ודיפרנציאביליות. תכונת
ערך הביניים.
7. נגזרות חלקיות מסדר גבוה. משפט הנגזרות המעורבות. פולינומי טיילור.
מיון נקודות סטציונריות. 
0366-1105-01
 מבוא לתורת הקבוצות
 Introduction to Set Theory
מר בן-אמו תוםשיעור אוד' מלמד006 א'1400-1200 סמ'  א'

פעולות בסיסיות בקבוצות, עוצמות, קבוצות בנות מניה, משפט קנטור ברנשטיין, קבוצות מעוצמת הרצף, חשבון מונים, קבוצות סדורות, חשבון סודרים, אקסיומת הבחירה והלמה של צורן.

 

 

 

 

 

0366-1105-02
 מבוא לתורת הקבוצות
 Introduction to Set Theory
מר קפלן אילתרגיל אורנשטיין111 א'1700-1600 סמ'  א'

פעולות בסיסיות בקבוצות, עצמות, קבוצות בנות מניה, משפט קנטור ברנשטיין, קבוצות מעצמת הרצף, חשבון מונים, אקסיומת הבחירה והלמה של צורן.

 

 

 

 

 

0366-1105-04
 מבוא לתורת הקבוצות
 Introduction to Set Theory
מר בן-אמו תוםשיעור א'1400-1200 סמ'  ב'

פעולות בסיסיות בקבוצות, עוצמות, קבוצות בנות מניה, משפט קנטור ברנשטיין, קבוצות מעוצמת הרצף, חשבון מונים, קבוצות סדורות, חשבון סודרים, אקסיומת הבחירה והלמה של צורן.

 

 

 

 

 

0366-1105-05
 מבוא לתורת הקבוצות
 Introduction to Set Theory
מר קפלן אילתרגיל א'1800-1700 סמ'  ב'

פעולות בסיסיות בקבוצות, עצמות, קבוצות בנות מניה, משפט קנטור ברנשטיין, קבוצות מעצמת הרצף, חשבון מונים, אקסיומת הבחירה והלמה של צורן.

 

 

 

 

 

0366-1106-01
 מבוא כללי למדעי המחשב
 Intro. to Computer Science
שיעור ד'1900-1600 סמ'  ב'

 

מטרת הקורס היא להעניק לסטודנטים רקע בתחומים השונים של מדעי המחשב ולספק להם כלים שבעזרתם יוכלו לפתור בעיות בתחומים מגוונים בעזרת תוכנה.
הקורס מועבר בשפת פייתון ובו נלמדים יסודות התכנות, ייצוג נתונים בזיכרון, מבני נתונים, אלגוריתמים בסיסיים דוגמת חיפוש ומיון ומבוא לגרפים. כמו כן יכוסו נושאים מתקדמים במדעי המחשב כגון אלגוריתמים אקראיים ואלגוריתמי קירוב, בעיות אופטימיזציה ושיטות לסיווג מידע
This course provides background in various topics in Computer Science with the purpose of giving the students the capabilities to solve problems using software development.
The course is given in the Python language, and mainly deals with programming fundamentals, data structures and algorithms. The course will also cover advanced topics in Computer Science such as randomized and approximation algorithms, optimization problems and methods for data classificatio
0366-1106-02
 מבוא כללי למדעי המחשב
 Intro. to Computer Science
תרגיל ה'1500-1400 סמ'  ב'

 

מטרת הקורס היא להעניק לסטודנטים רקע בתחומים השונים של מדעי המחשב ולספק להם כלים שבעזרתם יוכלו לפתור בעיות בתחומים מגוונים בעזרת תוכנה.
הקורס מועבר בשפת פייתון ובו נלמדים יסודות התכנות, ייצוג נתונים בזיכרון, מבני נתונים, אלגוריתמים בסיסיים דוגמת חיפוש ומיון ומבוא לגרפים. כמו כן יכוסו נושאים מתקדמים במדעי המחשב כגון אלגוריתמים אקראיים ואלגוריתמי קירוב, בעיות אופטימיזציה ושיטות לסיווג מידע
This course provides background in various topics in Computer Science with the purpose of giving the students the capabilities to solve problems using software development.
The course is given in the Python language, and mainly deals with programming fundamentals, data structures and algorithms. The course will also cover advanced topics in Computer Science such as randomized and approximation algorithms, optimization problems and methods for data classificatio
0366-1111-01
 אלגברה לינארית 1א
 Linear Algebra 1a
ד"ר אידלמן יולישיעור כיתות דן דוד001 ד'1000-0800 סמ'  א'
שיעור דאך005 ב'1000-0800 סמ'  א'
 אלגברה לינארית 1א
מערכות משוואות לינאריות, שיטת החילוץ של גאוס. מטריצות, פעולות בסיסיות, הפיכת מטריצות. דטרמיננטות. שדות. מרחבים וקטוריים מעל שדה כללי: הגדרה, קבוצות בלתי תלויות ופורשות, בסיס ומימד, תת-מרחבים. דרגה של מטריצה. העתקות לינאריות של מרחבים וקטוריים, דמות וגרעין. ייצוג של העתקות לינאריות באמצעות מטריצות. מרחב דואלי ודואלי שני, בסיס דואלי. מרחב מחפלה פנימית: משלים אורתוגונלי, בסיס אורתונורמלי, אלגוריתם של גרם-שמיט, אי-שיוויון קושי-שוורץ, העתקות ומטריצות אורתוגונליות.
 
 

Systems of linear algebraic equations. Gauss' elimination algorithm. Matrix calculus, basic operations, inverse matrix. Determinants. Vector spaces over a field. Linear dependence. Basis, dimension. Linear subspace. Linear maps. Matrix of a linear map. Kernel, image, and rank of a linear map. Isomorphism. Linear functional. Dual vector space. Scalar product, Euclidean and unitary spaces. Cauchy-Schwarz inequality. Orthonormal basis. Gram-Schmidt orthogonalization. Orthogonal and unitary matrices.

0366-1111-02
 אלגברה לינארית 1א
 Linear Algebra 1a
מר גישבולינר ליאורתרגיל פיזיקה-שנקר204 ג'1900-1700 סמ'  א'
תרגיל בנין רב תחומי315 ה'1600-1500 סמ'  א'
 אלגברה לינארית 1א
מערכות משוואות לינאריות, שיטת החילוץ של גאוס. מטריצות, פעולות בסיסיות, הפיכת מטריצות. דטרמיננטות. שדות. מרחבים וקטוריים מעל שדה כללי: הגדרה, קבוצות בלתי תלויות ופורשות, בסיס ומימד, תת-מרחבים. דרגה של מטריצה. העתקות לינאריות של מרחבים וקטוריים, דמות וגרעין. ייצוג של העתקות לינאריות באמצעות מטריצות. מרחב דואלי ודואלי שני, בסיס דואלי. מרחב מחפלה פנימית: משלים אורתוגונלי, בסיס אורתונורמלי, אלגוריתם של גרם-שמיט, אי-שיוויון קושי-שוורץ, העתקות ומטריצות אורתוגונליות.
 
 
0366-1111-03
 אלגברה לינארית 1א
 Linear Algebra 1a
מר כץ רםתרגיל פיזיקה-שנקר104 ד'1900-1800 סמ'  א'
תרגיל בנין רב תחומי315 ב'1400-1200 סמ'  א'
 אלגברה לינארית 1א
מערכות משוואות לינאריות, שיטת החילוץ של גאוס. מטריצות, פעולות בסיסיות, הפיכת מטריצות. דטרמיננטות. שדות. מרחבים וקטוריים מעל שדה כללי: הגדרה, קבוצות בלתי תלויות ופורשות, בסיס ומימד, תת-מרחבים. דרגה של מטריצה. העתקות לינאריות של מרחבים וקטוריים, דמות וגרעין. ייצוג של העתקות לינאריות באמצעות מטריצות. מרחב דואלי ודואלי שני, בסיס דואלי. מרחב מחפלה פנימית: משלים אורתוגונלי, בסיס אורתונורמלי, אלגוריתם של גרם-שמיט, אי-שיוויון קושי-שוורץ, העתקות ומטריצות אורתוגונליות.
 
 
0366-1111-04
 אלגברה לינארית 1א
 Linear Algebra 1a
פרופ אלסקר סמיוןשיעור כיתות דן דוד001 ג'1700-1500 סמ'  א'
שיעור כיתות דן דוד001 ה'1700-1500 סמ'  א'
 אלגברה לינארית 1א
מערכות משוואות לינאריות, שיטת החילוץ של גאוס. מטריצות, פעולות בסיסיות, הפיכת מטריצות. דטרמיננטות. שדות. מרחבים וקטוריים מעל שדה כללי: הגדרה, קבוצות בלתי תלויות ופורשות, בסיס ומימד, תת-מרחבים. דרגה של מטריצה. העתקות לינאריות של מרחבים וקטוריים, דמות וגרעין. ייצוג של העתקות לינאריות באמצעות מטריצות. מרחב דואלי ודואלי שני, בסיס דואלי. מרחב מחפלה פנימית: משלים אורתוגונלי, בסיס אורתונורמלי, אלגוריתם של גרם-שמיט, אי-שיוויון קושי-שוורץ, העתקות ומטריצות אורתוגונליות.
 
 
0366-1111-05
 אלגברה לינארית 1א
 Linear Algebra 1a
גב' ברוך אורתרגיל פיזיקה-שנקר204 ג'1300-1200 סמ'  א'
תרגיל פיזיקה-שנקר222 ג'1900-1700 סמ'  א'
 אלגברה לינארית 1א
מערכות משוואות לינאריות, שיטת החילוץ של גאוס. מטריצות, פעולות בסיסיות, הפיכת מטריצות. דטרמיננטות. שדות. מרחבים וקטוריים מעל שדה כללי: הגדרה, קבוצות בלתי תלויות ופורשות, בסיס ומימד, תת-מרחבים. דרגה של מטריצה. העתקות לינאריות של מרחבים וקטוריים, דמות וגרעין. ייצוג של העתקות לינאריות באמצעות מטריצות. מרחב דואלי ודואלי שני, בסיס דואלי. מרחב מחפלה פנימית: משלים אורתוגונלי, בסיס אורתונורמלי, אלגוריתם של גרם-שמיט, אי-שיוויון קושי-שוורץ, העתקות ומטריצות אורתוגונליות.
 
 
0366-1111-06
 אלגברה לינארית 1א
 Linear Algebra 1a
מר מיץ רועיתרגיל שרייבר מתמטי006 ג'2000-1700 סמ'  א'
 אלגברה לינארית 1א
מערכות משוואות לינאריות, שיטת החילוץ של גאוס. מטריצות, פעולות בסיסיות, הפיכת מטריצות. דטרמיננטות. שדות. מרחבים וקטוריים מעל שדה כללי: הגדרה, קבוצות בלתי תלויות ופורשות, בסיס ומימד, תת-מרחבים. דרגה של מטריצה. העתקות לינאריות של מרחבים וקטוריים, דמות וגרעין. ייצוג של העתקות לינאריות באמצעות מטריצות. מרחב דואלי ודואלי שני, בסיס דואלי. מרחב מחפלה פנימית: משלים אורתוגונלי, בסיס אורתונורמלי, אלגוריתם של גרם-שמיט, אי-שיוויון קושי-שוורץ, העתקות ומטריצות אורתוגונליות.
 
 
0366-1111-07
 אלגברה לינארית 1א
 Linear Algebra 1a
מר שוסטין בוריסתרגיל כיתות דן דוד207 ג'1900-1700 סמ'  א'
תרגיל הולצבלט007 א'1900-1800 סמ'  א'
 אלגברה לינארית 1א
מערכות משוואות לינאריות, שיטת החילוץ של גאוס. מטריצות, פעולות בסיסיות, הפיכת מטריצות. דטרמיננטות. שדות. מרחבים וקטוריים מעל שדה כללי: הגדרה, קבוצות בלתי תלויות ופורשות, בסיס ומימד, תת-מרחבים. דרגה של מטריצה. העתקות לינאריות של מרחבים וקטוריים, דמות וגרעין. ייצוג של העתקות לינאריות באמצעות מטריצות. מרחב דואלי ודואלי שני, בסיס דואלי. מרחב מחפלה פנימית: משלים אורתוגונלי, בסיס אורתונורמלי, אלגוריתם של גרם-שמיט, אי-שיוויון קושי-שוורץ, העתקות ומטריצות אורתוגונליות.
 
 
0366-1111-08
 אלגברה לינארית 1א
 Linear Algebra 1a
ד"ר אברון חייםשיעור ג'1700-1500 סמ'  ב'
שיעור ה'1700-1500 סמ'  ב'
 אלגברה לינארית 1א
מערכות משוואות לינאריות, שיטת החילוץ של גאוס. מטריצות, פעולות בסיסיות, הפיכת מטריצות. דטרמיננטות. שדות. מרחבים וקטוריים מעל שדה כללי: הגדרה, קבוצות בלתי תלויות ופורשות, בסיס ומימד, תת-מרחבים. דרגה של מטריצה. העתקות לינאריות של מרחבים וקטוריים, דמות וגרעין. ייצוג של העתקות לינאריות באמצעות מטריצות. מרחב דואלי ודואלי שני, בסיס דואלי. מרחב מחפלה פנימית: משלים אורתוגונלי, בסיס אורתונורמלי, אלגוריתם של גרם-שמיט, אי-שיוויון קושי-שוורץ, העתקות ומטריצות אורתוגונליות.
 
 
0366-1111-09
 אלגברה לינארית 1א
 Linear Algebra 1a
מר שגיב אמירתרגיל ג'2000-1800 סמ'  ב'
תרגיל ה'1800-1700 סמ'  ב'
 אלגברה לינארית 1א
מערכות משוואות לינאריות, שיטת החילוץ של גאוס. מטריצות, פעולות בסיסיות, הפיכת מטריצות. דטרמיננטות. שדות. מרחבים וקטוריים מעל שדה כללי: הגדרה, קבוצות בלתי תלויות ופורשות, בסיס ומימד, תת-מרחבים. דרגה של מטריצה. העתקות לינאריות של מרחבים וקטוריים, דמות וגרעין. ייצוג של העתקות לינאריות באמצעות מטריצות. מרחב דואלי ודואלי שני, בסיס דואלי. מרחב מחפלה פנימית: משלים אורתוגונלי, בסיס אורתונורמלי, אלגוריתם של גרם-שמיט, אי-שיוויון קושי-שוורץ, העתקות ומטריצות אורתוגונליות.
 
 
0366-1112-01
 אלגברה לינארית 2א
 Linear Algebra 2a
ד"ר שצירבק אינהשיעור כיתות דן דוד001 ב'1200-1000 סמ'  א'
שיעור כיתות דן דוד001 ה'1000-0800 סמ'  א'

(1)פולינומים (2) תת-מרחבים אינווריאנטיים, פירוק פרימרי, ליכסון של אופרטורים ליניאריים, צורות קנוניות,צורת ז'ורדן. (3) מרחבי מכפלה פנימית, אופרטורים ליניאריים במרחב מכפלה פנימית, פירוק ספקטרלי. (4) תבניות דו-ליניאריות וריבועיות. דרישות קדם: אלגברה ליניארית 1. ספרי לימוד: S. Lang. Linear algebra. G. Strang. Linear algebra and its applications. K. Hoffman, R. Kunze. Linear algebra. A. Kostrikin, Yu. Manin. Linear algebra and geometry. אלגברה ליניארית בהוצאת שאום. ש' עמיצור. אלגברה א'. י' גולן. יסודות האלגברה הליניארית.

1. Polynomials 2. Invariant subspaces, primary decomposition, diagonalization of linear operators, cannonical forms, Jordan form. 3. Inner product spaces, linear operators in inner product spaces, spectral decomposition. 4. Bilinear forms and quadratic forms.

Prerequisites: Linear Algebra 1.

0366-1112-02
 אלגברה לינארית 2א
 Linear Algebra 2a
מר כרמון דןתרגיל שרייבר מתמטי006 ג'1200-1000 סמ'  א'

חוג, פולינומים, פולינומים מעל מטריצות, סדרות וטורים של מטריצות, (exp(A, לכסון, שילוש, משפט Cayley-Hamilton, משפט Jordan, שימושים למשוואות דיפרנציאליות, מרחבים בעלי מכפלה סקלרית, תבניות בילינאריות.

 

 

 

0366-1112-03
 אלגברה לינארית 2א
 Linear Algebra 2a
פרופ אלסקר סמיוןשיעור ג'1800-1600 סמ'  ב'
שיעור ה'1700-1500 סמ'  ב'

חוג, פולינומים, פולינומים מעל מטריצות, סדרות וטורים של מטריצות, (exp(A, לכסון, שילוש, משפט Cayley-Hamilton, משפט Jordan, שימושים למשוואות דיפרנציאליות, מרחבים בעלי מכפלה סקלרית, תבניות בילינאריות.

 

 

 

Rings and homomorphisms, rings of polynomials, decomposition into irreducible factors, greatest common divisor. Eigenvalues and eigenvectors, diagonalization, triangulation, Cayley-Hamilton Theorem, characteristic  and  minimal polynomial, primary decomposition, Jordan form, Jacobson canonical form. Inner product spaces, linear maps in them, the spectral theorem. Bilinear forms and Sylvester's theorem, conics.
0366-1112-04
 אלגברה לינארית 2א
 Linear Algebra 2a
מר חזן צחיתרגיל ד'1400-1200 סמ'  ב'

חוג, פולינומים, פולינומים מעל מטריצות, סדרות וטורים של מטריצות, (exp(A, לכסון, שילוש, משפט Cayley-Hamilton, משפט Jordan, שימושים למשוואות דיפרנציאליות, מרחבים בעלי מכפלה סקלרית, תבניות בילינאריות.

 

 

 

0366-1112-05
 אלגברה לינארית 2א
 Linear Algebra 2a
מר חזן צחיתרגיל ג'2000-1800 סמ'  ב'

חוג, פולינומים, פולינומים מעל מטריצות, סדרות וטורים של מטריצות, (exp(A, לכסון, שילוש, משפט Cayley-Hamilton, משפט Jordan, שימושים למשוואות דיפרנציאליות, מרחבים בעלי מכפלה סקלרית, תבניות בילינאריות.

 

 

 

0366-1112-06
 אלגברה לינארית 2א
 Linear Algebra 2a
ד"ר אידלמן יולישיעור ג'1000-0800 סמ'  ב'
שיעור ה'1000-0800 סמ'  ב'

חוג, פולינומים, פולינומים מעל מטריצות, סדרות וטורים של מטריצות, (exp(A, לכסון, שילוש, משפט Cayley-Hamilton, משפט Jordan, שימושים למשוואות דיפרנציאליות, מרחבים בעלי מכפלה סקלרית, תבניות בילינאריות.

 

 

 

0366-1112-07
 אלגברה לינארית 2א
 Linear Algebra 2a
מר איילי נחשון יעקבתרגיל ג'1200-1000 סמ'  ב'

חוג, פולינומים, פולינומים מעל מטריצות, סדרות וטורים של מטריצות, (exp(A, לכסון, שילוש, משפט Cayley-Hamilton, משפט Jordan, שימושים למשוואות דיפרנציאליות, מרחבים בעלי מכפלה סקלרית, תבניות בילינאריות.

 

 

 

0366-1112-08
 אלגברה לינארית 2א
 Linear Algebra 2a
מר סמילנסקי יותםתרגיל ד'1400-1200 סמ'  ב'

חוג, פולינומים, פולינומים מעל מטריצות, סדרות וטורים של מטריצות, (exp(A, לכסון, שילוש, משפט Cayley-Hamilton, משפט Jordan, שימושים למשוואות דיפרנציאליות, מרחבים בעלי מכפלה סקלרית, תבניות בילינאריות.

 

 

 

0366-1119-01
 אלגברה לינארית 1ב
 Linear Algebra 1b
ד"ר להר אלישיעור ולפסון הנדסה001 ב'1000-0800 סמ'  א'
שיעור ולפסון הנדסה001 ג'1500-1400 סמ'  א'

מספרים מרוכבים, פתרון משוואות לינאריות, דטרמיננטים, נוסחת קרמר. מרחבים וקטוריים מעל שדה הממשיים והמרוכבים, בסיס ומימד, העתקות לינאריות ומטריצות, גרעין, טווח, מימד הטווח ודרגה של מטריצה, הרכבה של אופרטורים וכפל-מטריצות, החלפת בסיסים בתחום ובטווח. אופרטורים ממרחב לעצמו ומטריצות, תלות בבחירת הבסיס. מכפלה סקלרית ונצבות. אי-שיוויון שוורץ, ערך מוחלט של וקטור, אי-שיוויון המשולש. בסיס אורתונורמלי, היטל אורתוגינלי, תהליך גראם-שמידט.

 

 

 

 

 

0366-1119-02
 אלגברה לינארית 1ב
 Linear Algebra 1b
מר וישנבסקי לאונידתרגיל אורנשטיין103 ד'1400-1200 סמ'  א'

מספרים מרוכבים, פתרון משוואות לינאריות, דטרמיננטים, נוסחת קרמר. מרחבים וקטוריים מעל שדה הממשיים והמרוכבים, בסיס ומימד, העתקות לינאריות ומטריצות, גרעין, טווח, מימד הטווח ודרגה של מטריצה, הרכבה של אופרטורים וכפל-מטריצות, החלפת בסיסים בתחום ובטווח. אופרטורים ממרחב לעצמו ומטריצות, תלות בבחירת הבסיס. מכפלה סקלרית ונצבות. אי-שיוויון שוורץ, ערך מוחלט של וקטור, אי-שיוויון המשולש. בסיס אורתונורמלי, היטל אורתוגינלי, תהליך גראם-שמידט.

 

 

 

 

 

0366-1119-03
 אלגברה לינארית 1ב
 Linear Algebra 1b
מר וישנבסקי לאונידתרגיל אורנשטיין103 ה'1200-1000 סמ'  א'

מספרים מרוכבים, פתרון משוואות לינאריות, דטרמיננטים, נוסחת קרמר. מרחבים וקטוריים מעל שדה הממשיים והמרוכבים, בסיס ומימד, העתקות לינאריות ומטריצות, גרעין, טווח, מימד הטווח ודרגה של מטריצה, הרכבה של אופרטורים וכפל-מטריצות, החלפת בסיסים בתחום ובטווח. אופרטורים ממרחב לעצמו ומטריצות, תלות בבחירת הבסיס. מכפלה סקלרית ונצבות. אי-שיוויון שוורץ, ערך מוחלט של וקטור, אי-שיוויון המשולש. בסיס אורתונורמלי, היטל אורתוגינלי, תהליך גראם-שמידט.

 

 

 

 

 

0366-1119-04
 אלגברה לינארית 1ב
 Linear Algebra 1b
מר צודיקוביץ' דניאלתרגיל אורנשטיין103 ד'1200-1000 סמ'  א'

מספרים מרוכבים, פתרון משוואות לינאריות, דטרמיננטים, נוסחת קרמר. מרחבים וקטוריים מעל שדה הממשיים והמרוכבים, בסיס ומימד, העתקות לינאריות ומטריצות, גרעין, טווח, מימד הטווח ודרגה של מטריצה, הרכבה של אופרטורים וכפל-מטריצות, החלפת בסיסים בתחום ובטווח. אופרטורים ממרחב לעצמו ומטריצות, תלות בבחירת הבסיס. מכפלה סקלרית ונצבות. אי-שיוויון שוורץ, ערך מוחלט של וקטור, אי-שיוויון המשולש. בסיס אורתונורמלי, היטל אורתוגינלי, תהליך גראם-שמידט.

 

 

 

 

 

0366-1120-01
 אלגברה לינארית 2ב
 Linear Algebra 2b
ד"ר בן סימון גבריאלשיעור ב'1000-0800 סמ'  ב'
שיעור ה'1100-1000 סמ'  ב'

פירוק פולינומים, ריבוי של שורש, אידיאלים, מחלק משותף מקסימלי, האלגוריתמוס של אוקלידס, המשפט היסודי של האלגברה, משפט Bezout, פירוק פולינומים עם מקדמים מרוכבים. דמיון של מטריצות. ערכים וקטוריים עצמיים, פולינום אופייני של מטריצה, ערכים עצמיים של פונקציה של מטריצה. ריבוי גיאומטרי ואלגברי של ערך עצמי. לכסון מטריצות על-ידי דמיון, הצורה הקנונית של ז'ורדן, משפט מיון (ללא הוכחה), משפט Cayley‑Hamilton. עקבה של מטריצה ותכונותיה, הקשר בין פולינום אופייני, דטרמיננט ועקבה. מרחבי מכפלה פנימית מעל הממשיים והמרוכבים, מטריצה צמודה ואופרטור צמוד, אופרטור צמוד לעצמו, מטריצות הרמיטיות וסימטריות. משפט ספקטרלי, מטריצות אוניטריות ואורתוגונליות. מיון שניוניות במישור ובמרחב. יישומים: (חלק מהנושאים הבאים, ייתכנו שינויים) שיטת הריבועים הפחותים, מנת ריילי, שיטת המינימקס, משפט הפרדה של ערכים עצמיים, אופרטור חיובי, תנאי חיוביות של מטריצה סימטרית. משוואת הפרשים, סדרת פיבונצ'י, תנאים לקיום הגבול L = limn®¥ Mn.  מטריצת מעבר, קיום ויחידות של מצב יציב.  מבוא לתורת החבורות: תת-חבורות, משפט לגרנז'.

0366-1120-02
 אלגברה לינארית 2ב
 Linear Algebra 2b
מר שלו מתןתרגיל ה'1200-1100 סמ'  ב'
פירוק פולינומים, ריבוי של שורש, אידיאלים, מחלק משותף מקסימלי, האלגוריתמוס של אוקלידס, המשפט היסודי של האלגברה, משפט Bezout, פירוק פולינומים עם מקדמים מרוכבים. דמיון של מטריצות. ערכים וקטוריים עצמיים, פולינום אופייני של מטריצה, ערכים עצמיים של פונקציה של מטריצה. ריבוי גיאומטרי ואלגברי של ערך עצמי. לכסון מטריצות על-ידי דמיון, הצורה הקנונית של ז'ורדן, משפט מיון (ללא הוכחה), משפט Cayley‑Hamilton. עקבה של מטריצה ותכונותיה, הקשר בין פולינום אופייני, דטרמיננט ועקבה. מרחבי מכפלה פנימית מעל הממשיים והמרוכבים, מטריצה צמודה ואופרטור צמוד, אופרטור צמוד לעצמו, מטריצות הרמיטיות וסימטריות. משפט ספקטרלי, מטריצות אוניטריות ואורתוגונליות. מיון שניוניות במישור ובמרחב. יישומים: (נושאים לבחירה) שיטת הריבועים הפחותים, מנת ריילי, שיטת המינימקס, משפט הפרדה של ערכים עצמיים, אופרטור חיובי, תנאי חיוביות של מטריצה סימטרית. משוואת הפרשים, סדרת פיבונצ'י, תנאים לקיום הגבול L = limn®¥ Mn. שרשרות מרקוב, מטריצת מעבר, קיום ויחידות של מצב יציב. מבוא לתורת החבורות: תת-חבורות, משפט לגרנז'.
0366-1120-03
 אלגברה לינארית 2ב
 Linear Algebra 2b
מר שלו מתןתרגיל ה'1300-1200 סמ'  ב'
פירוק פולינומים, ריבוי של שורש, אידיאלים, מחלק משותף מקסימלי, האלגוריתמוס של אוקלידס, המשפט היסודי של האלגברה, משפט Bezout, פירוק פולינומים עם מקדמים מרוכבים. דמיון של מטריצות. ערכים וקטוריים עצמיים, פולינום אופייני של מטריצה, ערכים עצמיים של פונקציה של מטריצה. ריבוי גיאומטרי ואלגברי של ערך עצמי. לכסון מטריצות על-ידי דמיון, הצורה הקנונית של ז'ורדן, משפט מיון (ללא הוכחה), משפט Cayley‑Hamilton. עקבה של מטריצה ותכונותיה, הקשר בין פולינום אופייני, דטרמיננט ועקבה. מרחבי מכפלה פנימית מעל הממשיים והמרוכבים, מטריצה צמודה ואופרטור צמוד, אופרטור צמוד לעצמו, מטריצות הרמיטיות וסימטריות. משפט ספקטרלי, מטריצות אוניטריות ואורתוגונליות. מיון שניוניות במישור ובמרחב. יישומים: (נושאים לבחירה) שיטת הריבועים הפחותים, מנת ריילי, שיטת המינימקס, משפט הפרדה של ערכים עצמיים, אופרטור חיובי, תנאי חיוביות של מטריצה סימטרית. משוואת הפרשים, סדרת פיבונצ'י, תנאים לקיום הגבול L = limn®¥ Mn. שרשרות מרקוב, מטריצת מעבר, קיום ויחידות של מצב יציב. מבוא לתורת החבורות: תת-חבורות, משפט לגרנז'.
0366-1121-01
 חשבון דיפרנציאלי ואינטגרלי 1ב
 Calculus 1b
ד"ר להר אלישיעור לימודי הסביבה013Bד'1000-0800 סמ'  א'
שיעור הנדסת תוכנה102 ג'1200-1000 סמ'  א'

 

חדו"א 1ב

מושגים בסיסיים וסימונים - הקבוצה והפונקציה. סדרות ממשיות, מושג הגבול, טורים וחסמים, פונקציות רציפות (ממשיות במשתנה ממשי), מקסימום ומינימום, המספר הנגזר, פונקציות גזירות, משפטי ערך הביניים. כללי גזירה, פולינומים, פונקציות מעריכיות ולוגריתמים, מקסימום ומינימום של פונקציות גזירות, נקודות פיתול, נגזרת שנייה ופונקציות קמורות וקעורות. נגזרת מסדר גבוה, נוסחת טיילור, כלל לופיטל. האינטגרל המסוים, הפונקציה הקדומה והקשר ביניהם. שימושים של אינטגרל מסוים, אינטגרלים לא אמיתיים. טורי חזקות: משפט קושי-הדמר. טור טיילור.  

 

 

 

0366-1121-02
 חשבון דיפרנציאלי ואינטגרלי 1ב
 Calculus 1b
מר בלכמן לבתרגיל הולצבלט007 ה'1400-1200 סמ'  א'

 

חדו"א 1ב

מושגים בסיסיים וסימונים - הקבוצה והפונקציה. סדרות ממשיות, מושג הגבול, טורים וחסמים, פונקציות רציפות (ממשיות במשתנה ממשי), מקסימום ומינימום, המספר הנגזר, פונקציות גזירות, משפטי ערך הביניים. כללי גזירה, פולינומים, פונקציות מעריכיות ולוגריתמים, מקסימום ומינימום של פונקציות גזירות, נקודות פיתול, נגזרת שנייה ופונקציות קמורות וקעורות. נגזרת מסדר גבוה, נוסחת טיילור, כלל לופיטל. האינטגרל המסוים, הפונקציה הקדומה והקשר ביניהם. שימושים של אינטגרל מסוים, אינטגרלים לא אמיתיים. טורי חזקות: משפט קושי-הדמר. טור טיילור.  

 

 

 

0366-1121-03
 חשבון דיפרנציאלי ואינטגרלי 1ב
 Calculus 1b
מר קפלן אילתרגיל שרייבר מתמטי006 ג'1400-1200 סמ'  א'

 

חדו"א 1ב

מושגים בסיסיים וסימונים - הקבוצה והפונקציה. סדרות ממשיות, מושג הגבול, טורים וחסמים, פונקציות רציפות (ממשיות במשתנה ממשי), מקסימום ומינימום, המספר הנגזר, פונקציות גזירות, משפטי ערך הביניים. כללי גזירה, פולינומים, פונקציות מעריכיות ולוגריתמים, מקסימום ומינימום של פונקציות גזירות, נקודות פיתול, נגזרת שנייה ופונקציות קמורות וקעורות. נגזרת מסדר גבוה, נוסחת טיילור, כלל לופיטל. האינטגרל המסוים, הפונקציה הקדומה והקשר ביניהם. שימושים של אינטגרל מסוים, אינטגרלים לא אמיתיים. טורי חזקות: משפט קושי-הדמר. טור טיילור.  

 

 

 

0366-1121-04
 חשבון דיפרנציאלי ואינטגרלי 1ב
 Calculus 1b
מר בלכמן לבתרגיל פיזיקה-שנקר104 ג'1000-0800 סמ'  א'

 

חדו"א 1ב
מושגים בסיסיים וסימונים - הקבוצה והפונקציה. סדרות ממשיות, מושג הגבול, טורים וחסמים, פונקציות רציפות (ממשיות במשתנה ממשי), מקסימום ומינימום, המספר הנגזר, פונקציות גזירות, משפטי ערך הביניים. כללי גזירה, פולינומים, פונקציות מעריכיות ולוגריתמים, מקסימום ומינימום של פונקציות גזירות, נקודות פיתול, נגזרת שנייה ופונקציות קמורות וקעורות. נגזרת מסדר גבוה, נוסחת טיילור, כלל לופיטל. האינטגרל המסוים, הפונקציה הקדומה והקשר ביניהם. שימושים של אינטגרל מסוים, אינטגרלים לא אמיתיים. טורי חזקות: משפט קושי-הדמר. טור טיילור.

 

 

 

 

0366-1122-01
 חשבון דיפרנציאלי ואינטגרלי 2ב
 Calculus 2b
מר סגל אלכסשיעור ג'1400-1200 סמ'  ב'
שיעור ה'1000-0800 סמ'  ב'
חשבון דיפרנציאלי במספר משתנים: פונקציות של מספר משתנים, נגזרות חלקיות, דיפרנציאל שלם, כלל השרשרת, טור טיילור ב- 2 משתנים, יעקוביאנים, ערכים קיצוניים, כפל לגרנג', קואורדינטות קוטביות, חשבון אינטגרלי במספר משתנים, אינטגרלים כפולים ומשולשים בקואורדינטות קרטזיות, שינויי משתני אינטגרציה ע"י שימוש ביעקוביאנים (דוגמאות בחישוב שטחים, נפחים, מסה, בקואורדינטות קרטזיות, פולריות וגליליות), אינטגרלים קווים, משפט גרין, תלות האינטגרל במסלול, טורי פוריה, גזירה ואינטגרציה של טורי פוריה, שוויון פרסבל, התמרת פוריה, התמרת פוריה הפוכה, תכונות. 
 
0366-1122-02
 חשבון דיפרנציאלי ואינטגרלי 2ב
 Calculus 2b
מר וישנבסקי לאונידתרגיל ג'1000-0800 סמ'  ב'
חשבון דיפרנציאלי במספר משתנים: פונקציות של מספר משתנים, נגזרות חלקיות, דיפרנציאל שלם, כלל השרשרת, טור טיילור ב- 2 משתנים, יעקוביאנים, ערכים קיצוניים, כפל לגרנג', קואורדינטות קוטביות, חשבון אינטגרלי במספר משתנים, אינטגרלים כפולים ומשולשים בקואורדינטות קרטזיות, שינויי משתני אינטגרציה ע"י שימוש ביעקוביאנים (דוגמאות בחישוב שטחים, נפחים, מסה, בקואורדינטות קרטזיות, פולריות וגליליות), אינטגרלים קווים, משפט גרין, תלות האינטגרל במסלול, משפט גאוס (במישור) אינטגרלים משטחיים. אנליזה וקטורית: שדה סקלרי ווקטורי, האופרטורים: גרדינט, דיברגנץ ורוטור,   משפט גאוס וסטוקס.

 
0366-1122-03
 חשבון דיפרנציאלי ואינטגרלי 2ב
 Calculus 2b
מר וישנבסקי לאונידתרגיל ג'1200-1000 סמ'  ב'
חשבון דיפרנציאלי במספר משתנים: פונקציות של מספר משתנים, נגזרות חלקיות, דיפרנציאל שלם, כלל השרשרת, טור טיילור ב- 2 משתנים, יעקוביאנים, ערכים קיצוניים, כפל לגרנג', קואורדינטות קוטביות, חשבון אינטגרלי במספר משתנים, אינטגרלים כפולים ומשולשים בקואורדינטות קרטזיות, שינויי משתני אינטגרציה ע"י שימוש ביעקוביאנים (דוגמאות בחישוב שטחים, נפחים, מסה, בקואורדינטות קרטזיות, פולריות וגליליות), אינטגרלים קווים, משפט גרין, תלות האינטגרל במסלול, משפט גאוס (במישור) אינטגרלים משטחיים. אנליזה וקטורית: שדה סקלרי ווקטורי, האופרטורים: גרדינט, דיברגנץ ורוטור,   משפט גאוס וסטוקס.

 
0366-1122-04
 חשבון דיפרנציאלי ואינטגרלי 2ב
 Calculus 2b
תרגיל ד'1300-1100 סמ'  ב'
חשבון דיפרנציאלי במספר משתנים: פונקציות של מספר משתנים, נגזרות חלקיות, דיפרנציאל שלם, כלל השרשרת, טור טיילור ב- 2 משתנים, יעקוביאנים, ערכים קיצוניים, כפל לגרנג', קואורדינטות קוטביות, חשבון אינטגרלי במספר משתנים, אינטגרלים כפולים ומשולשים בקואורדינטות קרטזיות, שינויי משתני אינטגרציה ע"י שימוש ביעקוביאנים (דוגמאות בחישוב שטחים, נפחים, מסה, בקואורדינטות קרטזיות, פולריות וגליליות), אינטגרלים קווים, משפט גרין, תלות האינטגרל במסלול, משפט גאוס (במישור) אינטגרלים משטחיים. אנליזה וקטורית: שדה סקלרי ווקטורי, האופרטורים: גרדינט, דיברגנץ ורוטור,   משפט גאוס וסטוקס.

 
0366-1123-01
 מבוא לקומבינטוריקה ותורת הגרפים
 Introduction to Combinatorics and Graph Theory
גב' קרוננברג גלשיעור שרייבר מתמטי007 ד'1200-1000 סמ'  א'


0366-1123

INTRODUCTION TO COMBINATORICS AND GRAPH THEORY

 

 

Syllabus

 

 

טכניקות מניה אלמנטריות, עקרון ההכלה וההדחה, מקדמים בינומיים, פונקציות יוצרות,
משוואות נסיגה, הגדרות יסוד בתורת הגרפים

 

Elementary Counting techniques, Inclusion-Exclusion, Binomial coefficients, Generating functions, Recurrence equations, Basic concepts in Graph Theory

0366-1123-02
 מבוא לקומבינטוריקה ותורת הגרפים
 Introduction to Combinatorics and Graph Theory
גב' פרידמן לימורתרגיל שרייבר מתמטי007 ד'1300-1200 סמ'  א'


0366-1123

INTRODUCTION TO COMBINATORICS AND GRAPH THEORY

 

 

Syllabus

 

 

טכניקות מניה אלמנטריות, עקרון ההכלה וההדחה, מקדמים בינומיים, פונקציות יוצרות,
משוואות נסיגה, הגדרות יסוד בתורת הגרפים

 

Elementary Counting techniques, Inclusion-Exclusion, Binomial coefficients, Generating functions, Recurrence equations, Basic concepts in Graph Theory

0366-1123-04
 מבוא לקומבינטוריקה ותורת הגרפים
 Introduction to Combinatorics and Graph Theory
גב' שיכלמן קלרהשיעור ב'1600-1400 סמ'  ב'


0366-1123

INTRODUCTION TO COMBINATORICS AND GRAPH THEORY

 

 

Syllabus

 

 

טכניקות מניה אלמנטריות, עקרון ההכלה וההדחה, מקדמים בינומיים, פונקציות יוצרות,
משוואות נסיגה, הגדרות יסוד בתורת הגרפים

 

Elementary Counting techniques, Inclusion-Exclusion, Binomial coefficients, Generating functions, Recurrence equations, Basic concepts in Graph Theory

0366-1123-05
 מבוא לקומבינטוריקה ותורת הגרפים
 Introduction to Combinatorics and Graph Theory
גב' פרידמן לימורתרגיל ב'1700-1600 סמ'  ב'


0366-1123

INTRODUCTION TO COMBINATORICS AND GRAPH THEORY

 

 

Syllabus

 

 

טכניקות מניה אלמנטריות, עקרון ההכלה וההדחה, מקדמים בינומיים, פונקציות יוצרות,
משוואות נסיגה, הגדרות יסוד בתורת הגרפים

 

Elementary Counting techniques, Inclusion-Exclusion, Binomial coefficients, Generating functions, Recurrence equations, Basic concepts in Graph Theory

0366-1124-01
 חשבון דיפרנציאלי ואינטגרלי 1ג
 Calculus 1c
ד"ר בביצ'נקו יוסףשיעור אורנשטיין103 א'1000-0800 סמ'  א'
שיעור אורנשטיין103 ב'1000-0800 סמ'  א'

סמסטר א

פונקציה ממשית של משתנה ממשי; תחום הגדרה; גבול, רציפות; נגזרת;  נגזרת כשעור השינוי וכשיפוע, נגזרות גבוהות יותר; התנהגות מקומית של פונקציה הנקבעת על-ידי ערכי נגזרותיה בנקודה. כללי גזירה; נגזרות של פונקציות פשוטות. פיתוח  Taylor. דוגמאות ליישומים של נגזרות: מכסימום ומינימום. אינטגרל בלתי מסוים; טכניקות אינטגרציה. אינטגרל מסוים Riemann)); דוגמאות ליישומים של אינטגרלים: שטח במישור, אורך עקומה מישורית, שטח ונפח של משטח סיבוב, עבודה; משוואות דיפרנציאליות פשוטות

 

 

A real function of a real variable; domain of definition; limits, contiguous; derivatives; local behavior of a function; derivatives of simple functions, higher derivatives, Taylor's approximation.  Examples of applications of derivatives, tangent: maximum and minimum.

Improper integral; integration techniques; Riemann integral; examples of applications of integrals: length, area and volume of the body of revolution.

Simple differential equations.  

0366-1124-02
 חשבון דיפרנציאלי ואינטגרלי 1ג
 Calculus 1c
מר סיניצ'קין אוריאלתרגיל הולצבלט007 ה'1200-1000 סמ'  א'
סמסטר א
פונקציה ממשית של משתנה ממשי; תחום הגדרה; גבול, רציפות; נגזרת;  נגזרת כשעור השינוי וכשיפוע, נגזרות גבוהות יותר; התנהגות מקומית של פונקציה הנקבעת על-ידי ערכי נגזרותיה בנקודה. כללי גזירה; נגזרות של פונקציות פשוטות. פיתוח  Taylor. דוגמאות ליישומים של נגזרות: מכסימום ומינימום. אינטגרל בלתי מסוים; טכניקות אינטגרציה. אינטגרל מסוים Riemann)); דוגמאות ליישומים של אינטגרלים: שטח במישור, אורך עקומה מישורית, שטח ונפח של משטח סיבוב, עבודה; משוואות דיפרנציאליות פשוטות
 
 
A real function of a real variable; domain of definition; limits, contiguous; derivatives; local behavior of a function; derivatives of simple functions, higher derivatives, Taylor's approximation.  Examples of applications of derivatives, tangent: maximum and minimum.
Improper integral; integration techniques; Riemann integral; examples of applications of integrals: length, area and volume of the body of revolution.
Simple differential equations.  
0366-1124-03
 חשבון דיפרנציאלי ואינטגרלי 1ג
 Calculus 1c
מר צודיקוביץ' דניאלתרגיל הולצבלט007 ה'1600-1400 סמ'  א'
סמסטר א
פונקציה ממשית של משתנה ממשי; תחום הגדרה; גבול, רציפות; נגזרת;  נגזרת כשעור השינוי וכשיפוע, נגזרות גבוהות יותר; התנהגות מקומית של פונקציה הנקבעת על-ידי ערכי נגזרותיה בנקודה. כללי גזירה; נגזרות של פונקציות פשוטות. פיתוח  Taylor. דוגמאות ליישומים של נגזרות: מכסימום ומינימום. אינטגרל בלתי מסוים; טכניקות אינטגרציה. אינטגרל מסוים Riemann)); דוגמאות ליישומים של אינטגרלים: שטח במישור, אורך עקומה מישורית, שטח ונפח של משטח סיבוב, עבודה; משוואות דיפרנציאליות פשוטות
 
 
A real function of a real variable; domain of definition; limits, contiguous; derivatives; local behavior of a function; derivatives of simple functions, higher derivatives, Taylor's approximation.  Examples of applications of derivatives, tangent: maximum and minimum.
Improper integral; integration techniques; Riemann integral; examples of applications of integrals: length, area and volume of the body of revolution.
Simple differential equations.  
0366-1125-01
 חשבון דיפרנציאלי ואינטגרלי 2ג
 Calculus 2c
ד"ר גורביץ אנהשיעור אורנשטיין111 ב'1600-1400 סמ'  ב'
סמסטר  ב
פונקציה ממשית של n משתנים ממשיים; תחום הגדרה; פירוש גיאומטרי עבור n=2 ועבור כל n. גבול, רציפות. נגזרות חלקיות; דיפרנציאביליות, משוואת מישור משיק ונורמל למשטח עבור n=2. דיפרנציאל שלם; כלל השרשרת; נוסחת Taylor. נקודות סטציונריות עבור n=2 מכסימום, מינימום; נקודת אוכף.; יעקוביאן; נגזרות של פונקציות סתומות f(x,y)=O;  מישור משיק למשטח f(x,y,z)=O; מכסימום ומינימום עם אילוצים: כופלי Lagrange; מציאת מכסימום/מינימום גלובליים בתחום.
 גזירת אינטגרלים; אינטגרלים כפולים, שינוי משתנים , אינטגרלים משולשים, קואורדינאטות גליליות וכדוריות; אינטגרלים קוויים, האינטגרל של דיפרנציאל שלם.משפט גרין.
 חשבון ווריאציות.
 
 
 
A real function of n real variables; domain of definition; geometric interpretation for n = 2, and for each n. Limit, Contiguous. Partial derivatives; differentiability, the equation for the plane tangent to the surface for n = 2; the chain rule; Taylor formula, stationarypoints for n = 2: maximum, minimum; saddle point, Jacobean. Full differential; derivatives of implicit functions f (x, y) = O; plane tangent to the surface f (x, y, z) = O; maximum and minimum with constraints: Lagrange multiplicators.
Derivatives from the integrals; 2-dimentional integral, change of variables; 3-dimentional integral; cylindrical and spherical coordinates; integrals over lines, the integral of a full differential.  Green's theorem.
Variation calculation.
0366-1125-02
 חשבון דיפרנציאלי ואינטגרלי 2ג
 Calculus 2c
גב' סדובסקי שיתרגיל אורנשטיין111 ב'1400-1200 סמ'  ב'
סמסטר  ב
פונקציה ממשית של n משתנים ממשיים; תחום הגדרה; פירוש גיאומטרי עבור n=2 ועבור כל n. גבול, רציפות. נגזרות חלקיות; דיפרנציאביליות, משוואת מישור משיק ונורמל למשטח עבור n=2. דיפרנציאל שלם; כלל השרשרת; נוסחת Taylor. נקודות סטציונריות עבור n=2 מכסימום, מינימום; נקודת אוכף.; יעקוביאן; נגזרות של פונקציות סתומות f(x,y)=O;  מישור משיק למשטח f(x,y,z)=O; מכסימום ומינימום עם אילוצים: כופלי Lagrange; מציאת מכסימום/מינימום גלובליים בתחום.
 גזירת אינטגרלים; אינטגרלים כפולים, שינוי משתנים , אינטגרלים משולשים, קואורדינאטות גליליות וכדוריות; אינטגרלים קוויים, האינטגרל של דיפרנציאל שלם.משפט גרין.
 חשבון ווריאציות.
 
 
 
A real function of n real variables; domain of definition; geometric interpretation for n = 2, and for each n. Limit, Contiguous. Partial derivatives; differentiability, the equation for the plane tangent to the surface for n = 2; the chain rule; Taylor formula, stationarypoints for n = 2: maximum, minimum; saddle point, Jacobean. Full differential; derivatives of implicit functions f (x, y) = O; plane tangent to the surface f (x, y, z) = O; maximum and minimum with constraints: Lagrange multiplicators.
Derivatives from the integrals; 2-dimentional integral, change of variables; 3-dimentional integral; cylindrical and spherical coordinates; integrals over lines, the integral of a full differential.  Green's theorem.
Variation calculation.
0366-1125-03
 חשבון דיפרנציאלי ואינטגרלי 2ג
 Calculus 2c
מר סיניצ'קין אוריאלתרגיל בנין רב תחומי315 א'1300-1100 סמ'  ב'
סמסטר  ב
פונקציה ממשית של n משתנים ממשיים; תחום הגדרה; פירוש גיאומטרי עבור n=2 ועבור כל n. גבול, רציפות. נגזרות חלקיות; דיפרנציאביליות, משוואת מישור משיק ונורמל למשטח עבור n=2. דיפרנציאל שלם; כלל השרשרת; נוסחת Taylor. נקודות סטציונריות עבור n=2 מכסימום, מינימום; נקודת אוכף.; יעקוביאן; נגזרות של פונקציות סתומות f(x,y)=O;  מישור משיק למשטח f(x,y,z)=O; מכסימום ומינימום עם אילוצים: כופלי Lagrange; מציאת מכסימום/מינימום גלובליים בתחום.
 גזירת אינטגרלים; אינטגרלים כפולים, שינוי משתנים , אינטגרלים משולשים, קואורדינאטות גליליות וכדוריות; אינטגרלים קוויים, האינטגרל של דיפרנציאל שלם.משפט גרין.
 חשבון ווריאציות.
 
 
 
A real function of n real variables; domain of definition; geometric interpretation for n = 2, and for each n. Limit, Contiguous. Partial derivatives; differentiability, the equation for the plane tangent to the surface for n = 2; the chain rule; Taylor formula, stationarypoints for n = 2: maximum, minimum; saddle point, Jacobean. Full differential; derivatives of implicit functions f (x, y) = O; plane tangent to the surface f (x, y, z) = O; maximum and minimum with constraints: Lagrange multiplicators.
Derivatives from the integrals; 2-dimentional integral, change of variables; 3-dimentional integral; cylindrical and spherical coordinates; integrals over lines, the integral of a full differential.  Green's theorem.
Variation calculation.
0366-1130-01
 אלגברה לינארית 1ג
 Linear Algebra 1c
ד"ר פרחי אלזהשיעור אורנשטיין103 ב'1500-1300 סמ'  א'
שיעור אורנשטיין103 ה'1000-0900 סמ'  א'

 

סילבוס של הקורס אלגברה ליניארית 1ג' (לכימאים)      
מס. קורס 0366-1130   
 
תוכן הקורס:
 
מערכות משוואות ליניאריות, שיטת גאוס, מערכות הומוגניות.
מטריצות- מיון, פעולות, מטריצות הפיכות, דטרמיננטות.
מרחבים וקטורים: פעולות עם וקטורים, תלות ליניארית, בסיס ומימד, החלפת בסיס, תת-מרחבים, כפל סקלרי ווקטורי, בסיס אורתוגונאלי, היטל.
העתקות ליניאריות, גרעין, תמונה, מטריצה של העתקה, העתקה חד-חד ערכית והעתקה הפוכה, שינוי בסיס. ערכים עצמיים ווקטורים עצמיים, ריבוי אלגברי וגיאומטרי, ליכסון של מטריצה והעתקה.
 

הפקולטה למדעים מדויקים ע"ש סאקלר

-0366-1130  אלגברה ליניארית

מרצה: ד"ר אלזה פרחי

elza@post.tau.ac.il :E-mail ,03-6408828 : טלפון

שעות קבלה: לפי תאום מראש, חדר 017 , בניין שרייבר

 

virtual@Tau : אתר הקורס

תאור הקורס:

להקנות מושגים וכלים בסיסיים מהאלגברה הלינארית וידע בסיסי על משוואות דפרנציאליות

רגילות ליניאריות מסדר ראשון ושני.

שיטת הלימוד:

החומר יועבר לסטודנטים באמצעות הרצאות, שיעורי תרגול ותרגילי בית.

יתכן ויעשה שימוש ברשימת תפוצת הדואר האלקטרוני של הקורס. על כל סטודנט לדאוג כי

כתובת הדואר האלקטרוני שלו ברשימה זו תהיה עדכנית. ההרצאות, התרגילים ופתרונות

 

http://virtual2002.tau.ac.il :Virtual TAU- שלהם וחומרי עזר יפורסמו באתר הקורס ב

דרישות הקורס והערכת הסטודנט:

הגשת תרגילי בית היא 75% חובה (על מנת לגשת למבחן).

סטודנטים המגישים מעל 80% מהפתרונות (בכל תרגיל מעל 80% של השאלות) יהיו זכאים

לקבל בונוס בציון הסופי.

 

תוכן הקורס:

1. מערכות משוואות לינאריות, שיטת גאוס, מערכות הומוגניות.

2. מטריצות- הגדרה ומיון, פעולות, מטריצות הפיכות, דטרמיננטות.

3. מרחבים וקטורים (ליניאריים): פעולות עם וקטורים, תלות ליניארית, תת-מרחב.

 

 

קואורדינטות, כפל סקלרי ווקטורי, בסיס ,Span , 4. בסיס ומימד של מרחב וקטורי

אורתוגונאלי, היטל.

5. העתקות לינאריות, גרעין, תמונה, מטריצה של העתקה, העתקה חד-חד ערכית

והעתקה הפוכה, שינוי בסיס.

6. ערכים עצמיים ווקטורים עצמיים, ריבוי אלגברי וגיאומטרי, ליכסון.

7. משוואות דיפרנציאליות רגילות מסדר ראשון, הפרדת המשתנים, משוואה ליניארית,

 

 

 

 

 

מודלים.

8. משוואות לינאריות מסדר שני עם מקדמים קבועים, פתרון של משוואה הומוגנית ולא-

 

הומוגנית.

ספרות:

1. ס. ליפשוץ, אלגברה לינארית, סדרת שאום.

2. אלגברה לינארית, בהוצאת האוניברסיטה הפתוחה.

 

Wiley, 1994 ,Elementary linear algebra : applications version ,C. Rorres , H.Anton .3

. 4 . ברמן, ב. קון, אלגברה ליניארית, תאוריה ותרגילים, בק, 2007

5. פ. אירס, משואות דיפרנציאליות, סדרת שאום.

. 6. ד. פישלוב, א. פרחי, משוואות דיפרנציאליות רגילות, תאוריה ותרגילים, בק, 2007

 

 

0366-1130-02
 אלגברה לינארית 1ג
 Linear Algebra 1c
מר גרינגלז איליהתרגיל שרייבר מתמטי007 ה'1200-1000 סמ'  א'

 

סילבוס של הקורס אלגברה ליניארית 1ג' (לכימאים)      
מס. קורס 0366-1130   
 
תוכן הקורס:
 
מערכות משוואות ליניאריות, שיטת גאוס, מערכות הומוגניות.
מטריצות- מיון, פעולות, מטריצות הפיכות, דטרמיננטות.
מרחבים וקטורים: פעולות עם וקטורים, תלות ליניארית, בסיס ומימד, החלפת בסיס, תת-מרחבים, כפל סקלרי ווקטורי, בסיס אורתוגונאלי, היטל.
העתקות ליניאריות, גרעין, תמונה, מטריצה של העתקה, העתקה חד-חד ערכית והעתקה הפוכה, שינוי בסיס. ערכים עצמיים ווקטורים עצמיים, ריבוי אלגברי וגיאומטרי, ליכסון של מטריצה והעתקה.
 
 

הפקולטה למדעים מדויקים ע"ש סאקלר

-0366-1130  אלגברה ליניארית

מרצה: ד"ר אלזה פרחי

elza@post.tau.ac.il :E-mail ,03-6408828 : טלפון

שעות קבלה: לפי תאום מראש, חדר 017 , בניין שרייבר

 

virtual@Tau : אתר הקורס

תאור הקורס:

להקנות מושגים וכלים בסיסיים מהאלגברה הלינארית וידע בסיסי על משוואות דפרנציאליות

רגילות ליניאריות מסדר ראשון ושני.

שיטת הלימוד:

החומר יועבר לסטודנטים באמצעות הרצאות, שיעורי תרגול ותרגילי בית.

יתכן ויעשה שימוש ברשימת תפוצת הדואר האלקטרוני של הקורס. על כל סטודנט לדאוג כי

כתובת הדואר האלקטרוני שלו ברשימה זו תהיה עדכנית. ההרצאות, התרגילים ופתרונות

 

http://virtual2002.tau.ac.il :Virtual TAU- שלהם וחומרי עזר יפורסמו באתר הקורס ב

דרישות הקורס והערכת הסטודנט:

הגשת תרגילי בית היא 75% חובה (על מנת לגשת למבחן).

סטודנטים המגישים מעל 80% מהפתרונות (בכל תרגיל מעל 80% של השאלות) יהיו זכאים

לקבל בונוס בציון הסופי.

 

תוכן הקורס:

1. מערכות משוואות לינאריות, שיטת גאוס, מערכות הומוגניות.

2. מטריצות- הגדרה ומיון, פעולות, מטריצות הפיכות, דטרמיננטות.

3. מרחבים וקטורים (ליניאריים): פעולות עם וקטורים, תלות ליניארית, תת-מרחב.

 

 

קואורדינטות, כפל סקלרי ווקטורי, בסיס ,Span , 4. בסיס ומימד של מרחב וקטורי

אורתוגונאלי, היטל.

5. העתקות לינאריות, גרעין, תמונה, מטריצה של העתקה, העתקה חד-חד ערכית

והעתקה הפוכה, שינוי בסיס.

6. ערכים עצמיים ווקטורים עצמיים, ריבוי אלגברי וגיאומטרי, ליכסון.

7. משוואות דיפרנציאליות רגילות מסדר ראשון, הפרדת המשתנים, משוואה ליניארית,

 

 

 

 

 

מודלים.

8. משוואות לינאריות מסדר שני עם מקדמים קבועים, פתרון של משוואה הומוגנית ולא-

 

הומוגנית.

ספרות:

1. ס. ליפשוץ, אלגברה לינארית, סדרת שאום.

2. אלגברה לינארית, בהוצאת האוניברסיטה הפתוחה.

 

Wiley, 1994 ,Elementary linear algebra : applications version ,C. Rorres , H.Anton .3

. 4 . ברמן, ב. קון, אלגברה ליניארית, תאוריה ותרגילים, בק, 2007

5. פ. אירס, משואות דיפרנציאליות, סדרת שאום.

. 6. ד. פישלוב, א. פרחי, משוואות דיפרנציאליות רגילות, תאוריה ותרגילים, בק, 2007

 

 

0366-1130-03
 אלגברה לינארית 1ג
 Linear Algebra 1c
מר גרינגלז איליהתרגיל שרייבר מתמטי007 ה'1600-1400 סמ'  א'

 

סילבוס של הקורס אלגברה ליניארית 1ג' (לכימאים)      
מס. קורס 0366-1130   
 
תוכן הקורס:
 
מערכות משוואות ליניאריות, שיטת גאוס, מערכות הומוגניות.
מטריצות- מיון, פעולות, מטריצות הפיכות, דטרמיננטות.
מרחבים וקטורים: פעולות עם וקטורים, תלות ליניארית, בסיס ומימד, החלפת בסיס, תת-מרחבים, כפל סקלרי ווקטורי, בסיס אורתוגונאלי, היטל.
העתקות ליניאריות, גרעין, תמונה, מטריצה של העתקה, העתקה חד-חד ערכית והעתקה הפוכה, שינוי בסיס. ערכים עצמיים ווקטורים עצמיים, ריבוי אלגברי וגיאומטרי, ליכסון של מטריצה והעתקה.
 
 

הפקולטה למדעים מדויקים ע"ש סאקלר

-0366-1130  אלגברה ליניארית

מרצה: ד"ר אלזה פרחי

elza@post.tau.ac.il :E-mail ,03-6408828 : טלפון

שעות קבלה: לפי תאום מראש, חדר 017 , בניין שרייבר

 

virtual@Tau : אתר הקורס

תאור הקורס:

להקנות מושגים וכלים בסיסיים מהאלגברה הלינארית וידע בסיסי על משוואות דפרנציאליות

רגילות ליניאריות מסדר ראשון ושני.

שיטת הלימוד:

החומר יועבר לסטודנטים באמצעות הרצאות, שיעורי תרגול ותרגילי בית.

יתכן ויעשה שימוש ברשימת תפוצת הדואר האלקטרוני של הקורס. על כל סטודנט לדאוג כי

כתובת הדואר האלקטרוני שלו ברשימה זו תהיה עדכנית. ההרצאות, התרגילים ופתרונות

 

http://virtual2002.tau.ac.il :Virtual TAU- שלהם וחומרי עזר יפורסמו באתר הקורס ב

דרישות הקורס והערכת הסטודנט:

הגשת תרגילי בית היא 75% חובה (על מנת לגשת למבחן).

סטודנטים המגישים מעל 80% מהפתרונות (בכל תרגיל מעל 80% של השאלות) יהיו זכאים

לקבל בונוס בציון הסופי.

 

תוכן הקורס:

1. מערכות משוואות לינאריות, שיטת גאוס, מערכות הומוגניות.

2. מטריצות- הגדרה ומיון, פעולות, מטריצות הפיכות, דטרמיננטות.

3. מרחבים וקטורים (ליניאריים): פעולות עם וקטורים, תלות ליניארית, תת-מרחב.

 

 

קואורדינטות, כפל סקלרי ווקטורי, בסיס ,Span , 4. בסיס ומימד של מרחב וקטורי

אורתוגונאלי, היטל.

5. העתקות לינאריות, גרעין, תמונה, מטריצה של העתקה, העתקה חד-חד ערכית

והעתקה הפוכה, שינוי בסיס.

6. ערכים עצמיים ווקטורים עצמיים, ריבוי אלגברי וגיאומטרי, ליכסון.

7. משוואות דיפרנציאליות רגילות מסדר ראשון, הפרדת המשתנים, משוואה ליניארית,

 

 

 

 

 

מודלים.

8. משוואות לינאריות מסדר שני עם מקדמים קבועים, פתרון של משוואה הומוגנית ולא-

 

הומוגנית.

ספרות:

1. ס. ליפשוץ, אלגברה לינארית, סדרת שאום.

2. אלגברה לינארית, בהוצאת האוניברסיטה הפתוחה.

 

Wiley, 1994 ,Elementary linear algebra : applications version ,C. Rorres , H.Anton .3

. 4 . ברמן, ב. קון, אלגברה ליניארית, תאוריה ותרגילים, בק, 2007

5. פ. אירס, משואות דיפרנציאליות, סדרת שאום.

. 6. ד. פישלוב, א. פרחי, משוואות דיפרנציאליות רגילות, תאוריה ותרגילים, בק, 2007

 

 

0366-1823-01
 קורס הכנה בפיזיקה
 Preparatory Course in Physics
פרופ גולדמן יצחקשיעור אורנשטיין111 א'2000-1800 סמ'  ב'
שיעור ב'1100-1000 סמ'  ב'

מכניקה: קינמטיקה של נקודה, החוק השני של ניוטון, עבודה ואנרגיה, כוחות חיכוך, תנע, אוסצילטור הרמוני ורזוננס, כח מרכזי ותנועה סיבובית, חוקי קפלר. 
חשמל: מטען חשמלי, עקרונות יסוד מבנה האטום, חוק קולומב, קבול זרם, התנגדות, אנרגיה חשמלית, השדה המגנטי הקשור בזרם, הכח האלקטרומגנטי שמושרה ע"י שדה מגנטי, מעגלי R-L-C.

 

 

 

 

0366-1823-02
 קורס הכנה בפיזיקה
 Preparatory Course in Physics
פרופ גולדמן יצחקתרגיל ב'1200-1100 סמ'  ב'

מכניקה: קינמטיקה של נקודה, החוק השני של ניוטון, עבודה ואנרגיה, כוחות חיכוך, תנע, אוסצילטור הרמוני ורזוננס, כח מרכזי ותנועה סיבובית, חוקי קפלר. 
חשמל: מטען חשמלי, עקרונות יסוד מבנה האטום, חוק קולומב, קבול זרם, התנגדות, אנרגיה חשמלית, השדה המגנטי הקשור בזרם, הכח האלקטרומגנטי שמושרה ע"י שדה מגנטי, מעגלי R-L-C.

 

 

 

 

0366-2010-01
 מבוא להסתברות
 Introduction to Probability Theory
ד"ר נשרי אלוןשיעור כיתות דן דוד002 ה'1600-1400 סמ'  א'
שיעור דאך005 ב'1700-1600 סמ'  א'

קורס זה מלמד את יסודות ההסתברות הבדידה.
דרישות קדם: מבוא לתורת הקבוצות, מבוא לקומבינטוריקה ותורת הגרפים, חשבון דיפרנציאלי ואינטגרלי 2א' ואלגברה לינארית 2א'.
הקורס מתמטיקה בדידה יתקבל במקום הדרישה לקורסים מבוא לתורת הקבוצות ומבוא לקומבינטוריקה ותורת הגרפים. אפשר לקחת את הקורסים חשבון דיפרנציאלי ואינטגרלי 2א' ואלגברה לינארית 2א' במקביל למבוא להסתברות.

סילבוס הקורס:
מרחבי הסתברות סופיים ובני מנייה, מאורעות, הסתברות אחידה וקומבינטוריקה, חסם האיחוד, נוסחת ההכלה וההפרדה.
הסתברות מותנה, אי תלות, כללי שרשרת, נוסחת ההסתברות השלמה, חוק בייז.
משתנים מקריים, התפלגות משותפת, התפלגות מותנה, אי תלות, פונקציות של משתנים מקריים.
התפלגויות בדידות נפוצות: ברנולי, אחידה, בינומית, גיאומטרית, היפרגיאומטרית, פואסונית ואחרות.
תוחלת, שונות, שונות משותפת, מתאם, תוחלת מותנה ושונות מותנה.
אי שוויונות מרקוב, צ'בישב וינסן, החוק החלש של המספרים הגדולים, משפט גבול פואסוני ומשפט הגבול המרכזי.
שרשראות מרקוב בעלות מרחב מצבים סופי: הגדרה, פריקות ומחזוריות, התפלגות סטציונרית ומשפט ההתכנסות להתפלגות הסטציונרית.
נושאים נוספים ודוגמאות שידונו לפי בחירת המרצה: הילוכים מקריים, גרפים מקריים ופרקולציה, צימודים, מרחק הוריאציה בין התפלגויות, זמני ערבוב, פרמוטציות מקריות, תהליכי הסתעפות, אי שוויונות לסטיות גדולות ומושג האנטרופיה.

0366-2010-05
 מבוא להסתברות
 Introduction to Probability Theory
פרופ נחמיאס אסףשיעור א'1500-1400 סמ'  ב'
שיעור ד'1600-1400 סמ'  ב'
קורס זה מלמד את יסודות ההסתברות הבדידה.
דרישות קדם: מבוא לתורת הקבוצות, מבוא לקומבינטוריקה ותורת הגרפים, חשבון דיפרנציאלי ואינטגרלי 2א' ואלגברה לינארית 2א'.
הקורס מתמטיקה בדידה יתקבל במקום הדרישה לקורסים מבוא לתורת הקבוצות ומבוא לקומבינטוריקה ותורת הגרפים. אפשר לקחת את הקורסים חשבון דיפרנציאלי ואינטגרלי 2א' ואלגברה לינארית 2א' במקביל למבוא להסתברות.

סילבוס הקורס:
מרחבי הסתברות סופיים ובני מנייה, מאורעות, הסתברות אחידה וקומבינטוריקה, חסם האיחוד, נוסחת ההכלה וההפרדה.
הסתברות מותנה, אי תלות, כללי שרשרת, נוסחת ההסתברות השלמה, חוק בייז.
משתנים מקריים, התפלגות משותפת, התפלגות מותנה, אי תלות, פונקציות של משתנים מקריים.
התפלגויות בדידות נפוצות: ברנולי, אחידה, בינומית, גיאומטרית, היפרגיאומטרית, פואסונית ואחרות.
תוחלת, שונות, שונות משותפת, מתאם, תוחלת מותנה ושונות מותנה.
אי שוויונות מרקוב, צ'בישב וינסן, החוק החלש של המספרים הגדולים, משפט גבול פואסוני ומשפט הגבול המרכזי.
שרשראות מרקוב בעלות מרחב מצבים סופי: הגדרה, פריקות ומחזוריות, התפלגות סטציונרית ומשפט ההתכנסות להתפלגות הסטציונרית.
נושאים נוספים ודוגמאות שידונו לפי בחירת המרצה: הילוכים מקריים, גרפים מקריים ופרקולציה, צימודים, מרחק הוריאציה בין התפלגויות, זמני ערבוב, פרמוטציות מקריות, תהליכי הסתעפות, אי שוויונות לסטיות גדולות ומושג האנטרופיה.
0366-2103-01
 משוואות דיפרנציאליות רגילות 1
 Ordinary Differential Equations 1
פרופ ביאלי מיכאלשיעור הנדסה כתות ח102 ה'1400-1100 סמ'  א'

משוואות ומערכות, דוגמאות, שיטות פתרון, תיאוריה של בעיות התחלה, תיאוריה של משוואות לינאריות, מבוא למערכות דינמיות, תורת שטורם ליוביל

 

Equations and systems, examples, methods of solution, theory of initial-value problems, theory of linear equations, introduction to dynamical systems, Sturm-Liouville theory

0366-2103-02
 משוואות דיפרנציאליות רגילות 1
 Ordinary Differential Equations 1
מר כהנא אדרתרגיל פיזיקה-שנקר222 ב'1000-0900 סמ'  א'
משוואות מסדר ראשון לינאריות ולא לינאריות, שיטות אלמנטריות ומשפטי קיום ויחידות, פתרונות סינגולריים, משוואות מסדר גבוה יותר - משפטי קיום ויחידות, ורונסקיאן, שיטות פתרון, מערכות עם מקדמים קבועים ומשתנים, תורת שטורם-ליוביל עם מקדמים קבועים ומשתנים, טורי פוריה
0366-2103-04
 משוואות דיפרנציאליות רגילות 1
 Ordinary Differential Equations 1
ד"ר פרחי אלזהשיעור ד'1800-1600 סמ'  ב'
שיעור ה'1500-1400 סמ'  ב'
משוואות מסדר ראשון לינאריות ולא לינאריות, שיטות אלמנטריות ומשפטי קיום ויחידות, פתרונות סינגולריים, משוואות מסדר גבוה יותר - משפטי קיום ויחידות, ורונסקיאן, שיטות פתרון, מערכות עם מקדמים קבועים ומשתנים, תורת שטורם-ליוביל עם מקדמים קבועים ומשתנים, טורי פוריה
0366-2103-05
 משוואות דיפרנציאליות רגילות 1
 Ordinary Differential Equations 1
מר מוזיקנטוב יבגניתרגיל ה'1600-1500 סמ'  ב'
משוואות מסדר ראשון לינאריות ולא לינאריות, שיטות אלמנטריות ומשפטי קיום ויחידות, פתרונות סינגולריים, משוואות מסדר גבוה יותר - משפטי קיום ויחידות, ורונסקיאן, שיטות פתרון, מערכות עם מקדמים קבועים ומשתנים, תורת שטורם-ליוביל עם מקדמים קבועים ומשתנים, טורי פוריה
0366-2104-01
 משוואות דיפרנציאליות רגילות 2
 Ordinary Differential Equations 2
פרופ לבנט אריהשיעור ות ד'1800-1500 סמ'  ב'

              מד"ר 2

 
בעיות שפה ופונקציות גרין: חלופת פרדהולם לבעיות שפה לינאריות, שיטות להוכחת יחידות, מבוא לטורי פוריה, פונקציות גרין, פיתוח בטור של פונקציות עצמיות.
נקודות סינגולריות: פיתוח פרובניוס סביב נקודה סינגולרית רגילה, קיום של פתרונות בסביבה של נקודה סינגולרית רגילה, מבוא לנקודה סינגולרית לא-רגילה.
מערכות דינמיות: מבוא, משוואות אוטונומיות ולא-אוטונומיות במימד אחד, מערכות דינמיות אוטונומיות במישור: פונקציות ליאפונוב ויציבות של נקודת שבת, משפט היריעה היציבה, משפט פאונקרה-בנדיקסון.
 
     ODE 2
 
Boundary-value problems: Fredholm alternative for linear boundary-value problems, methods for proving uniqueness, introduction to Fourier series, Green's functions, expansion in eigenfunctions.
 
Singular points: Frobenius expansion near regular singular points, existence of solutions near regular singular points, introduction to irregular singular points.
 
Dynamical systems: Introduction, autonomous and non-autonomous single equations, dynamical systems in the plane: Lyapunov functions and stability of fixed points, stable manifold theorem, Poincaré-Bendixon Theorem.
0366-2105-01
 אנליזה נומרית 1
 Numerical Analysis
פרופ שקולניצקי יואלשיעור אורנשטיין103 ג'1400-1200 סמ'  א'
שיעור כיתות דן דוד207 ה'1300-1200 סמ'  א'

אריתמטיקה סופית - רגישות ואיבוד דיוק. משפט ויירשטרס על קרוב פולינומיאלי, פולינומי ברנשטיין. אינטרפולציה באמצעות פולינומים על פי לגרנז' וניוטון, אינטרפולציה טריגונומטרית. הפרשים מחולקים, אנליזה פורמלית של הפרשים סופיים. אינטרפולצית הרמיט לפונקציה ונגזרותיה. גזירה נומרית, הוכחת הרדוקציה של אינטרפולצית ניוטון להרמיט. אינטגרציה נומרית, שיטת גאוס, פולינומים אורתוגונליים והוכחת תכונותיהם. קרוב ריבועים פחותים, קרובי פוריה בבסיס אורתוגונלי, הוכחת התכנסות במקרה הטריגונומטרי כאשר הפונקציה חלקה למקוטעין. קרוב המינימקס, איפיון וחישוב, פולינומי צ'בישב, האלגוריתם של רמז. משפט נקודת השבת, שיטות איטרטיביות לפתרון משוואות לינאריות ולא לינאריות, שיטת ניוטון-רפסון למערכת, קצב התכנסות, שיטת החזקה לערכים עצמיים. אקסטרפולציה. פונקציות ספליין: איפיון, חישוב ותכונות קרוב, B-splines.

 

 

 

 

0366-2105-02
 אנליזה נומרית 1
 Numerical Analysis
מר שגיב אמירתרגיל כיתות דן דוד207 ה'1400-1300 סמ'  א'

אריתמטיקה סופית - רגישות ואיבוד דיוק. משפט ויירשטרס על קרוב פולינומיאלי, פולינומי ברנשטיין. אינטרפולציה באמצעות פולינומים על פי לגרנז' וניוטון, אינטרפולציה טריגונומטרית. הפרשים מחולקים, אנליזה פורמלית של הפרשים סופיים. אינטרפולצית הרמיט לפונקציה ונגזרותיה. גזירה נומרית, הוכחת הרדוקציה של אינטרפולצית ניוטון להרמיט. אינטגרציה נומרית, שיטת גאוס, פולינומים אורתוגונליים והוכחת תכונותיהם. קרוב ריבועים פחותים, קרובי פוריה בבסיס אורתוגונלי, הוכחת התכנסות במקרה הטריגונומטרי כאשר הפונקציה חלקה למקוטעין. קרוב המינימקס, איפיון וחישוב, פולינומי צ'בישב, האלגוריתם של רמז. משפט נקודת השבת, שיטות איטרטיביות לפתרון משוואות לינאריות ולא לינאריות, שיטת ניוטון-רפסון למערכת, קצב התכנסות, שיטת החזקה לערכים עצמיים. אקסטרפולציה. פונקציות ספליין: איפיון, חישוב ותכונות קרוב, B-splines.

 

 

 

 

0366-2105-03
 אנליזה נומרית 1
 Numerical Analysis
מר שגיב אמירתרגיל שרייבר מתמטי007 ה'1000-0900 סמ'  א'

אריתמטיקה סופית - רגישות ואיבוד דיוק. משפט ויירשטרס על קרוב פולינומיאלי, פולינומי ברנשטיין. אינטרפולציה באמצעות פולינומים על פי לגרנז' וניוטון, אינטרפולציה טריגונומטרית. הפרשים מחולקים, אנליזה פורמלית של הפרשים סופיים. אינטרפולצית הרמיט לפונקציה ונגזרותיה. גזירה נומרית, הוכחת הרדוקציה של אינטרפולצית ניוטון להרמיט. אינטגרציה נומרית, שיטת גאוס, פולינומים אורתוגונליים והוכחת תכונותיהם. קרוב ריבועים פחותים, קרובי פוריה בבסיס אורתוגונלי, הוכחת התכנסות במקרה הטריגונומטרי כאשר הפונקציה חלקה למקוטעין. קרוב המינימקס, איפיון וחישוב, פולינומי צ'בישב, האלגוריתם של רמז. משפט נקודת השבת, שיטות איטרטיביות לפתרון משוואות לינאריות ולא לינאריות, שיטת ניוטון-רפסון למערכת, קצב התכנסות, שיטת החזקה לערכים עצמיים. אקסטרפולציה. פונקציות ספליין: איפיון, חישוב ותכונות קרוב, B-splines.

 

 

 

0366-2105-04
 אנליזה נומרית 1
 Numerical Analysis
ד"ר פרחי אלזהשיעור א'1600-1400 סמ'  ב'
שיעור ה'1400-1300 סמ'  ב'

אריתמטיקה סופית - רגישות ואיבוד דיוק. משפט ויירשטרס על קרוב פולינומיאלי, פולינומי ברנשטיין. אינטרפולציה באמצעות פולינומים על פי לגרנז' וניוטון, אינטרפולציה טריגונומטרית. הפרשים מחולקים, אנליזה פורמלית של הפרשים סופיים. אינטרפולצית הרמיט לפונקציה ונגזרותיה. גזירה נומרית, הוכחת הרדוקציה של אינטרפולצית ניוטון להרמיט. אינטגרציה נומרית, שיטת גאוס, פולינומים אורתוגונליים והוכחת תכונותיהם. קרוב ריבועים פחותים, קרובי פוריה בבסיס אורתוגונלי, הוכחת התכנסות במקרה הטריגונומטרי כאשר הפונקציה חלקה למקוטעין. קרוב המינימקס, איפיון וחישוב, פולינומי צ'בישב, האלגוריתם של רמז. משפט נקודת השבת, שיטות איטרטיביות לפתרון משוואות לינאריות ולא לינאריות, שיטת ניוטון-רפסון למערכת, קצב התכנסות, שיטת החזקה לערכים עצמיים. אקסטרפולציה. פונקציות ספליין: איפיון, חישוב ותכונות קרוב, B-splines.

 

 

 

 

0366-2105-05
 אנליזה נומרית 1
 Numerical Analysis
מר סובר ברקתרגיל ה'1300-1200 סמ'  ב'

אריתמטיקה סופית - רגישות ואיבוד דיוק. משפט ויירשטרס על קרוב פולינומיאלי, פולינומי ברנשטיין. אינטרפולציה באמצעות פולינומים על פי לגרנז' וניוטון, אינטרפולציה טריגונומטרית. הפרשים מחולקים, אנליזה פורמלית של הפרשים סופיים. אינטרפולצית הרמיט לפונקציה ונגזרותיה. גזירה נומרית, הוכחת הרדוקציה של אינטרפולצית ניוטון להרמיט. אינטגרציה נומרית, שיטת גאוס, פולינומים אורתוגונליים והוכחת תכונותיהם. קרוב ריבועים פחותים, קרובי פוריה בבסיס אורתוגונלי, הוכחת התכנסות במקרה הטריגונומטרי כאשר הפונקציה חלקה למקוטעין. קרוב המינימקס, איפיון וחישוב, פולינומי צ'בישב, האלגוריתם של רמז. משפט נקודת השבת, שיטות איטרטיביות לפתרון משוואות לינאריות ולא לינאריות, שיטת ניוטון-רפסון למערכת, קצב התכנסות, שיטת החזקה לערכים עצמיים. אקסטרפולציה. פונקציות ספליין: איפיון, חישוב ותכונות קרוב, B-splines.

 

 

 

 

0366-2106-01
 פונקציות ממשיות
 Functions of a Real Variable
פרופ סודין מיכאלשיעור שרייבר מתמטי008 א'1200-1000 סמ'  א'
שיעור שרייבר מתמטי008 ג'1400-1300 סמ'  א'

מידה ומידה חיצונית, מידת לבג, פונקציות מדידות, אינטגרל ביחס למידה, מידת מכפלה, פונקציות בעלות השתנות חסומה, מידות מסומנות ומשפט רדון ניקודים, מרחבי פונקציות אינטגרביליות

0366-2106-02
 פונקציות ממשיות
 Functions of a Real Variable
גב' גליקזם עדיתרגיל פיזיקה-שנקר222 א'1600-1500 סמ'  א'

 

מידה חיצונית ומידה. מידת לבג על הישר הממשי. פונקציות מדידות. אינטגרל ביחס למידה, משפטי התכנסות. גזירות פונקציות מונוטוניות, פונקציות בעלות השתנות חסומה, פונקציות רציפות בהחלט. מידה על מרחב מכפלה. מרחבים של פונקציות אינטגרביליות.
ספרים מומלצים:

(Terence TAO, "An introduction to measure theory" (AMS, 2011

לינדנשטראוס, ב' וייס, א' פזי, מבוא לאנליזה מודרנית
 

 

 

 

 

0366-2115-01
 טופולוגיה
 Topology
פרופ שוסטין יבגנישיעור כיתות דן דוד201 ד'1500-1300 סמ'  א'
שיעור כיתות דן דוד201 ד'1600-1500 סמ'  א'

 

מרחבים טופולוגיים. בסיס לטופולוגיה. מרחבים מטריים. מיון נקודות ביחס לתת-קבוצה. טופולוגיה מושרית. העתקות רציפות. קשירות, קשירות מסילתית. אקסיומות הפרדה. אקסיומות מנייה. קומפקטיות. מכפלה של מרחבים טופולוגיים. מרחבים מטריזביליים. מרחב-מנה. מרחב העתקות. יריעה טופולוגית, יריעה עם שפה. יריעות חד-מימדיות. משטחים סגורים. איפיון Euler ואוריינטביליות. הומוטופיה. חבורה יסודית. מרחב פשוט קשר. כיסוי, מסילה מכסה. חבורה יסודית והעתקות רציפות. משפט Seifert-Van Kampen. מרחבים תאיים. יריעות חלקות, תת-יריעה, אימרסיה, סובמרסיה. שיכון יריעות לתוך מרחב אוקלידי.

 

דרישות קדם: אלגברה ליניארית 1 ו- 2, חדו''א 1.

 

 

 

םפרי לימוד:

J. L. Kelly. General topology, 1957.

Bourbaki N. Topologie generale, 1949.

W. Massey. A basic course in algebraic topology,  1991.

C. Kosniowski. A first course in algebraic topology, 1980.

J. Munkres. Topology, 1975. 

Topological spaces. Base of topology. Metric spaces. Classification of points with respect to a subset. Induced topology. Continuous maps. Connectedness, linear and polygonal connectedness. Separation axioms. Countability axioms. Compactness. Product of topological spaces. Metrizability. Quotient-space. Space of continuous maps. Topological manifolds, manifolds with boundary. One-dimensional manifolds. Closed surfaces. Euler characteristic and orientability. Homotopy. Fundamental group. Simply connected spaces. Covering. Covering homotopy. Homomorphisms of fundamental groups. Seifert-Van Kampen theorem. Cell spaces. Smooth manifolds, submanifolds, immersion and submersion. Embedding of manifolds into Euclidean spaces.

 

 

Prerequisites: Linear algebra I, II; Calculus I

 

 

Bibliography:

J. L. Kelly. General topology, 1957.

Bourbaki N. Topologie generale, 1949.

W. Massey. A basic course in algebraic topology,  1991.

C. Kosniowski. A first course in algebraic topology, 1980.

J. Munkres. Topology, 1975. 

0366-2115-02
 טופולוגיה
 Topology
מר בלכמן לבתרגיל אורנשטיין111 ב'1200-1100 סמ'  א'
טופולוגיה – 0366.2115.01
 
 
  1. מרחבים טופולוגיים, פונקציות רציפות, מכפלה טופולוגית, מרחב מנה.
  2. קשירות, קשירות מקומית.
  3. אקסיומות ההפרדה, משפט אוריסון, משפט ההרחבה של טיצה, משפט השיכון של טיכונוב
  4. רשתות, אכסיומות המניה, משפט המטריזביליות של אוריסון.
  5. מרחבים קומפקטיים, משפט המכפלה של טיכונוב, מרחבים קומפקטיים מקומית, קומפקטיפיקציות.
  6. מרחבים מטריים שלמים, קומפקטיות במרחבים מטריים.
  7. חבורת היסוד, משפט בראוער, משפט ז'ורדן.    

                                                  Topology 0366.2115.01

                                                            Aldo Lazar

 

 

1. Topological spaces, continuous functions, topological product, quotient spaces.

 

2. Connected and locally connected spaces.

 

3. Separation axioms, Urysohn's lemma, Tietze's extension theorem, Tychonoff's embedding theorem.

 

4. Nets, countability axioms, Urysohn's metrizability theorem.

 

5. Compact spaces, Tychonoff's product theorem, locally compact spaces, compactifications.

 

6. Complete metric spaces, compactness in metric spaces.

 

7. The fundamental group, Brouwer's fixed point theorem , the Jordan curve theorem.


 
0366-2123-01
 תורת הפונקציות המרוכבות 1
 Theory of Functions of a Complex Variable 1
פרופ בוחובסקי לבשיעור כיתות דן דוד207 ה'1100-1000 סמ'  א'
שיעור הולצבלט007 ג'1200-1000 סמ'  א'

 

שדה המרוכבים, פונקציות מרוכבות, טורים ומכפלות אינסופיים, פונקציות אלמנטריות, גזירה, פונקציות הולומורפיות, משפטי קושי, טורי טיילור ולורן, אפסים ונקודות סינגולריות, משפטי רסידום ושימושים, עיקרון הארגומנט ומשפט רושה.

 

0366-2123-02
 תורת הפונקציות המרוכבות 1
 Theory of Functions of a Complex Variable 1
גב' טנאי שירהתרגיל אוד' מלמד006 ג'1800-1700 סמ'  א'

 

שדה המרוכבים, פונקציות מרוכבות, טורים ומכפלות אינסופיים, פונקציות אלמנטריות, גזירה, פונקציות הולומורפיות, משפטי קושי, טורי טיילור ולורן, אפסים ונקודות סינגולריות, משפטי רסידום ושימושים, עיקרון הארגומנט ומשפט רושה.

 

0366-2123-04
 תורת הפונקציות המרוכבות 1
 Theory of Functions of a Complex Variable 1
פרופ נחמיאס אסףשיעור א'1300-1200 סמ'  ב'
שיעור ה'1200-1000 סמ'  ב'

 

שדה המרוכבים, פונקציות מרוכבות, טורים ומכפלות אינסופיים, פונקציות אלמנטריות, גזירה, פונקציות הולומורפיות, משפטי קושי, טורי טיילור ולורן, אפסים ונקודות סינגולריות, משפטי רסידום ושימושים, עיקרון הארגומנט ומשפט רושה.

 

0366-2123-05
 תורת הפונקציות המרוכבות 1
 Theory of Functions of a Complex Variable 1
מר קירו אבנרתרגיל ב'1000-0900 סמ'  ב'

 

שדה המרוכבים, פונקציות מרוכבות, טורים ומכפלות אינסופיים, פונקציות אלמנטריות, גזירה, פונקציות הולומורפיות, משפטי קושי, טורי טיילור ולורן, אפסים ונקודות סינגולריות, משפטי רסידום ושימושים, עיקרון הארגומנט ומשפט רושה.

 

0366-2132-01
 אלגברה ב 1
 Algebra B 1
ד"ר פודר בן נעים דורוןשיעור הולצבלט007 ב'1900-1700 סמ'  א'
שיעור הולצבלט007 ה'1900-1800 סמ'  א'
Groups, Isomorphism Theorems, Lagrange's Theorem, Group actions, Sylow's Theorems, Finitely generated Abelian groups, Solvable groups, the Symmetric group, Free groups.
חבורות, משפטי איזומורפיזם, משפט לגראנז',פעולות של חבורות, משפטי סילוב, חבורות חלופיות נוצרות סופית, חבורות פתירות, חבורות סימטריות,חבורות חופשיות 

                                                 "Algebra B-1" - 0366213201

 

 

                                (2012-13, spring semester)

 

 

                                           Lecturer: Prof. E. Shustin

 

 

 

 

 

 

 

 

 Algebraic structures1

Monoid, commutative monoid, group, commutative (abelian) group, ring, field. Examples.

  Subgroup. Homomorphism. Isomorphism2

 

 

Subgroup, generators, cosets, index of a subgroup, Lagrange's theorem. Cauchy's theorem. Homomorphism, kernel, and image of a homomorphism, isomorphism. Cyclic group, Fermat's little theorem. Examples: symmetric group, group of units of a commutative ring, multiplicative group of a field and its subgroups.

3. Normal subgroups

 

 

Normal subgroup and quotient group. Normal subgroups and homomorphisms. The main theorem on homomorphisms. Normalizer and centralizer. Center of a group. Product of subgroups. Examples: alternating subgroup of symmetric group. Simple groups.

4. Theorems on isomorphisms

 

 

Theorems on isomorphisms. Noether's theorem. Zassenhaus' theorem.

5. Group actions

 

 

Group actions on itself. Cayley's theorem. Conjugation. Group action on a set. Orbit, stabilizer. The class formula: Applications.

6. Sylow's theorems

 

 

p-groups. Three Sylow's theorems and their applications.

7. Category of groups

Category. Category with products and coproducts. Free groups.

8. Abelian groups

 

 

Direct product and internal direct product. Abelian $p$-groups Free abelian group. Torsion. Structure theorem for finitely generated abelian groups. Applications.

9. Classification of finite groups

 

 

Classification of groups up to order 60.

10. Solvable groups

 

 

Commutator, commutant. Submormal series. Solvable groups.

11. Composition series

 

 

Composition series. Schreier's theorem. Jordan-H\"older theorem.

 

 

Prerequisites: Linear Algebra 1,2 

 

 

                                 סמסטר א', תשע''ג

 

 

 

המרצה: פרופ' י. שוסטין

 

 

1.     מבנים אלגבריים

 

מונויד, מונויד חילופי, חבורה, חבורה אבלית (חילופית), חוג, שדה. דוגמאות.

 

2.     תת-חבורה, הומומורפיזם, איזומורפיזם

 

תת-חבורה, יוצרים, מחלקות לוואי, אינדקס. משפטי Lagrange  ו- Cauchy. הומומורפיזם, גרעין ותמונה, איזומורפיזם. חבורה מעגלית. משפט Fermat הקטן. דוגמאות: חבורה סימטרית, חבורת יחידות של חוג, חבורה חיבורית וכיפלית של שדה.

 

3.     תת-חבורה נורמלית

 

תת-חבורה נורמלית חבורת-מנה.  תת-חבורות נורמליות והומומורפיזמים. המשפט היסודי על הומומורפיזמים. מנרמל ומרכז. מרכז של חבורה. מכפלת תת-חבורות. דוגמאות: תת-חבורה מתחלפת של חבורה סימטרית, חבורה ראשונית.

 

4.     משפטי איזומורפיזם

 

משפטי איזומורפיזם. משפטי  Noether ו- Zassenhaus.

 

5.     פעולה של חבורה

 

פעולות חבורה בעצמה. משפט Cayley. הצמדה. פעולת חבורה בקבוצה. מסלול, משמר. נוסחת מחלקות ויישומיה.

 

6.     משפטי Sylow

 

חבורות -  p. משפטי Sylow ויישומיהם.

 

7.     קטגורית חבורות

 

קטגוריה. קטגוריה עם מכפלות וקומכפלות. חבורה חופשית.

 

8.     חבורות אבליות

 

מכפלה ישרה חיצונית ופנימית. תבורות – p אבליות. חבורה אבלית חופשית. פיתול.  מבנה של חבורות אבליות נוצרות סופית. יישומים.

 

9.     מיון חבורות סופיות.

 

מיון חבורות עד לסדר 60.

 

10.                         חבורות פתירות.

 

קומוטטור וקומוטנט.  סדרות  תת-נורמליות. חבורות פתירות.

 

11.                        סדרות הרכב.

 

סדרות הרכב. משפטי Schreier ו- Jordan-Hoelder

 

דרישות מוקדמות:

 

אלגברה ליניארית 1,2.

 

ספרי לימוד:

 

M. Artin. Algebra. Prentice Hall, Englewood Cliffs, NJ, 1991.

 

S. Lang. Algebra. Addison-Wesley, Reading, MA, 1965.

L. Rowen. {\it Algebra: Groups, Rings, Fields}. A. K. Peters-Wellesley, MA, 1994

 

 

 

Bibliography:

 

 

M. Artin. Algebra. Prentice Hall, Englewood Cliffs, NJ, 1991.

 

 

S. Lang. Algebra. Addison-Wesley, Reading, MA, 1965.

L. Rowen. {\it Algebra: Groups, Rings, Fields}. A. K. Peters-Wellesley, MA, 1994.

 

 

0366-2132-02
 אלגברה ב 1
 Algebra B 1
מר שוסטרמן מרקתרגיל הולצבלט007 ה'1700-1600 סמ'  א'
Groups, Isomorphism Theorems, Lagrange's Theorem, Group actions, Sylow's Theorems, Finitely generated Abelian groups, Solvable groups, the Symmetric group, Free groups.
חבורות, משפטי איזומורפיזם, משפט לגראנז',פעולות של חבורות, משפטי סילוב, חבורות חלופיות נוצרות סופית, חבורות פתירות, חבורות סימטריות,חבורות חופשיות 
0366-2132-03
 אלגברה ב 1
 Algebra B 1
ד"ר פודר בן נעים דורוןשיעור א'1800-1700 סמ'  ב'
שיעור ד'1000-0800 סמ'  ב'

Groups, Isomorphism Theorems, Lagrange's Theorem, Group actions, Sylow's Theorems, Finitely generated Abelian groups, Solvable groups, the Symmetric group, Free groups.
חבורות, משפטי איזומורפיזם, משפט לגראנז',פעולות של חבורות, משפטי סילוב, חבורות אבליות נוצרות סופית, חבורות פתירות, חבורות סימטריות,חבורות חופשיות 

0366-2132-04
 אלגברה ב 1
 Algebra B 1
מר שוסטרמן מרקתרגיל ד'1600-1500 סמ'  ב'
Groups, Isomorphism Theorems, Lagrange's Theorem, Group actions, Sylow's Theorems, Finitely generated Abelian groups, Solvable groups, the Symmetric group, Free groups.
חבורות, משפטי איזומורפיזם, משפט לגראנז',פעולות של חבורות, משפטי סילוב, חבורות חלופיות נוצרות סופית, חבורות פתירות, חבורות סימטריות,חבורות חופשיות 
0366-2133-01
 אלגברה ב 2
 Algebra B 2
פרופ סודרי דודשיעור ב'1900-1700 סמ'  ב'
שיעור ג'1400-1300 סמ'  ב'

הרחבות של שדה, שדות פצול, ספרביליות, האוטומורפיזמים של הרחבה, המשפט היסודי של תורת גלואה, שורשי יחידה, שדות סופיים, איברים פרימיטיביים, נורמה ועקבה, תורת גלואה של משוואות, פתרון של משוואות ע"י רדיקאלים, הסגור האלגברי של שדה, תלות אלגברית, הרחבה טרנסצנדנטית פשוטה, הרחבות ספרביליות ואי ספרביליות.

 

 

 


0366-2133-02
 אלגברה ב 2
 Algebra B 2
מר כרמון דןתרגיל ג'1800-1700 סמ'  ב'

הרחבות של שדה, שדות פצול, ספרביליות, האוטומורפיזמים של הרחבה, המשפט היסודי של תורת גלואה, שורשי יחידה, שדות סופיים, איברים פרימיטיביים, נורמה ועקבה, תורת גלואה של משוואות, פתרון של משוואות ע"י רדיקאלים, הסגור האלגברי של שדה, תלות אלגברית, הרחבה טרנסצנדנטית פשוטה, הרחבות ספרביליות ואי ספרביליות.

 

 

 


0366-2140-01
 תורת המספרים
 Number Theory
פרופ ווייס ברקשיעור כיתות דן דוד201 ד'1300-1100 סמ'  א'
שיעור בנין רב תחומי315 ב'1200-1100 סמ'  א'

האלגוריתם של אוקלידס: מחלק משותף מקסימלי, יחידות פירוק לראשוניים, משוואות דיופנטיות לינאריות, שברים משולבים. קונגרואנציות, משפט השאריות הסיני, המשפט הקטן של פרמה, שרשים פרימיטיביים. קונגרואנציות ריבועיות, סימני לג'נדר ויעקובי, משפט ההדדיות הרבועית. קרובים רציונליים, משוואת Pell, משפט ליוביל על קרובים רציונליים למספרים אלגבריים.

 

נושאים נוספים שיכוסו ככל שהזמן יתיר:  משפט המספרים הראשוניים (ללא הוכחה) ושימושיו, בדיקת ראשוניות, הצפנה במפתח פומבי (RSA), אריתמטיקה של הרחבות ריבועיות של רציונליים וסכומי ריבועים.

 

 

 

 

 

0366-2140-02
 תורת המספרים
 Number Theory
מר סמילנסקי יותםתרגיל בנין רב תחומי315 ב'1100-1000 סמ'  א'

האלגוריתם של אוקלידס: מחלק משותף מקסימלי, יחידות פירוק לראשוניים, משוואות דיופנטיות לינאריות, שברים משולבים. קונגרואנציות, משפט השאריות הסיני, המשפט הקטן של פרמה, שרשים פרימיטיביים. קונגרואנציות ריבועיות, סימני לג'נדר ויעקובי, משפט ההדדיות הרבועית. קרובים רציונליים, משוואת Pell, משפט ליוביל על קרובים רציונליים למספרים אלגבריים.

 

נושאים נוספים שיכוסו ככל שהזמן יתיר:  משפט המספרים הראשוניים (ללא הוכחה) ושימושיו, בדיקת ראשוניות, הצפנה במפתח פומבי (RSA), אריתמטיקה של הרחבות ריבועיות של רציונליים וסכומי ריבועים.

 

 

 

 

 

0366-2140-03
 תורת המספרים
 Number Theory
פרופ בורובוי מיכאלשיעור ג'1600-1400 סמ'  ב'
שיעור ה'1700-1600 סמ'  ב'

האלגוריתם של אוקלידס: מחלק משותף מקסימלי, יחידות פירוק לראשוניים, משוואות דיופנטיות לינאריות, שברים משולבים. קונגרואנציות, משפט השאריות הסיני, המשפט הקטן של פרמה, שרשים פרימיטיביים. קונגרואנציות ריבועיות, סימני לג'נדר ויעקובי, משפט ההדדיות הרבועית. קרובים רציונליים, משוואת Pell, משפט ליוביל על קרובים רציונליים למספרים אלגבריים.

 

נושאים נוספים שיכוסו ככל שהזמן יתיר:  משפט המספרים הראשוניים (ללא הוכחה) ושימושיו, בדיקת ראשוניות, הצפנה במפתח פומבי (RSA), אריתמטיקה של הרחבות ריבועיות של רציונליים וסכומי ריבועים.

 

 

 

 

 

0366-2140-04
 תורת המספרים
 Number Theory
פרופ בורובוי מיכאלתרגיל ה'1800-1700 סמ'  ב'

האלגוריתם של אוקלידס: מחלק משותף מקסימלי, יחידות פירוק לראשוניים, משוואות דיופנטיות לינאריות, שברים משולבים. קונגרואנציות, משפט השאריות הסיני, המשפט הקטן של פרמה, שרשים פרימיטיביים. קונגרואנציות ריבועיות, סימני לג'נדר ויעקובי, משפט ההדדיות הרבועית. קרובים רציונליים, משוואת Pell, משפט ליוביל על קרובים רציונליים למספרים אלגבריים.

 

נושאים נוספים שיכוסו ככל שהזמן יתיר:  משפט המספרים הראשוניים (ללא הוכחה) ושימושיו, בדיקת ראשוניות, הצפנה במפתח פומבי (RSA), אריתמטיקה של הרחבות ריבועיות של רציונליים וסכומי ריבועים.

 

 

 

 

 

0366-2141-01
 חשבון דיפרנציאלי ואינטגרלי 3
 Calculus 3
ד"ר אנטין אלכסיישיעור אורנשטיין103 ג'1600-1400 סמ'  א'
שיעור אוד' מלמד006 ה'1800-1700 סמ'  א'

Calculus - 3

 

Prerequisites: Calculus-1, Calculus-2, Linear algebra-1, Linear algebra-2

 

Short syllabus:

 

1. Preliminaries:

 

Euclidean space.

 

2. Differentiation:

 

Differentiable maps. Inverse function theorem. Open mapping theorem and Lagrange multipliers. Implicit function theorem.

 

3. Integration:

 

Null sets. Multiple integrals. Fubini theorem. Change of variables.

Improper integrals.

1. מרחב אוקלידי
2. העתקות גזירות. משפט פונקציה הפוכה. משפט העתקה פתוחה. כופלי Lagrange, משפט פונקציה סתומה.
3. קבוצות זניחות. אינטגרל רימן. משפט פוביני. החלפת משתנים. אינטגרל לא אמיתי.

0366-2141-02
 חשבון דיפרנציאלי ואינטגרלי 3
 Calculus 3
מר איילי נחשון יעקבתרגיל אורנשטיין103 ג'1700-1600 סמ'  א'

Calculus - 3

 

Prerequisites: Calculus-1, Calculus-2, Linear algebra-1, Linear algebra-2

 

Short syllabus:

 

1. Preliminaries:

 

Metric spaces, continuous maps. Euclidean space.

 

2. Differentiation:

 

Differentiable maps. Inverse function theorem. Open mapping theorem and Lagrange multipliers. Implicit function theorem.

 

3. Integration:

 

Null sets. Multiple integrals. Fubini theorem. Change of variables.

Improper integrals.

1. מרחבים מטריים, העתקות רציפות. מרחב אוקלידי
2. העתקות גזירות. משפט פונקציה הפוכה. משפט העתקה פתוחה. כופלי Lagrange, משפט פונקציה סתומה.
3. קבוצות זניחות. אינטגרל רימן. משפט פוביני. החלפת משתנים. אינטגרל לא אמיתי.

0366-2141-04
 חשבון דיפרנציאלי ואינטגרלי 3
 Calculus 3
ד"ר אנטין אלכסיישיעור ב'1600-1400 סמ'  ב'
שיעור ד'1400-1300 סמ'  ב'

Calculus - 3

 

Prerequisites: Calculus-1, Calculus-2, Linear algebra-1, Linear algebra-2

 

Short syllabus:

 

1. Preliminaries:

 

Metric spaces, continuous maps. Euclidean space.

 

2. Differentiation:

 

Differentiable maps. Inverse function theorem. Open mapping theorem and Lagrange multipliers. Implicit function theorem.

 

3. Integration:

 

Null sets. Multiple integrals. Fubini theorem. Change of variables.

Improper integrals.

1. מרחבים מטריים, העתקות רציפות. מרחב אוקלידי
2. העתקות גזירות. משפט פונקציה הפוכה. משפט העתקה פתוחה. כופלי Lagrange, משפט פונקציה סתומה.
3. קבוצות זניחות. אינטגרל רימן. משפט פוביני. החלפת משתנים. אינטגרל לא אמיתי.

0366-2141-05
 חשבון דיפרנציאלי ואינטגרלי 3
 Calculus 3
מר ראוך איתמרתרגיל ב'1700-1600 סמ'  ב'

Calculus - 3

 

Prerequisites: Calculus-1, Calculus-2, Linear algebra-1, Linear algebra-2

 

Short syllabus:

 

1. Preliminaries:

 

Metric spaces, continuous maps. Euclidean space.

 

2. Differentiation:

 

Differentiable maps. Inverse function theorem. Open mapping theorem and Lagrange multipliers. Implicit function theorem.

 

3. Integration:

 

Null sets. Multiple integrals. Fubini theorem. Change of variables.

Improper integrals.

1. מרחבים מטריים, העתקות רציפות. מרחב אוקלידי
2. העתקות גזירות. משפט פונקציה הפוכה. משפט העתקה פתוחה. כופלי Lagrange, משפט פונקציה סתומה.
3. קבוצות זניחות. אינטגרל רימן. משפט פוביני. החלפת משתנים. אינטגרל לא אמיתי.

0366-2180-01
 חשבון דיפרנציאלי ואינטגרלי 4
 Calculus 4
ד"ר שצירבק אינהשיעור כיתות דן דוד207 ג'1700-1400 סמ'  א'

 

Calculus - 4

 

Prerequisite: Calculus-3

 

Short syllabus:

 

1. Integration over manifolds in R^n:

 

Smooth manifolds in R^n, and their tangent spaces.

Integration over manifolds.

 

2. Divergence theorem:

 

Vector fields. Divergence theorem and its applications (Green's formulas, harmonic functions in R^n).

 

3. Line integrals:

 

Linear differential forms. Line integrals. Green's theorem and its application.

 

1. יריעות במרחב אוקלידי. מרחב משיק. אינטגרל ביריעה.

2. שדות וקטוריים. משפט דיווירגנץ ויישומיו (נוסחאות גרין פונקציות הרמוניות).

3. תבניות דיפרנציאליות. אנטגרל לאורך המסילה. משפט גרין ויישומיו.

 

0366-2180-02
 חשבון דיפרנציאלי ואינטגרלי 4
 Calculus 4
גב' מור קרןתרגיל פיזיקה-שנקר222 ה'1800-1700 סמ'  א'

 

Calculus - 4

 

Prerequisite: Calculus-3

 

Short syllabus:

 

1. Integration over manifolds in R^n:

 

Smooth manifolds in R^n, and their tangent spaces.

Integration over manifolds.

 

2. Divergence theorem:

 

Vector fields. Divergence theorem and its applications (Green's formulas, harmonic functions in R^n).

 

3. Line integrals:

 

Linear differential forms. Line integrals. Green's theorem and its application.

 

1. יריעות במרחב אוקלידי. מרחב משיק. אינטגרל ביריעה.

2. שדות וקטוריים. משפט דיווירגנץ ויישומיו (נוסחאות גרין פונקציות הרמוניות).

3. תבניות דיפרנציאליות. אנטגרל לאורך המסילה. משפט גרין ויישומיו.

 

0366-2180-04
 חשבון דיפרנציאלי ואינטגרלי 4
 Calculus 4
פרופ בוחובסקי לבשיעור ב'1700-1500 סמ'  ב'
שיעור ד'1400-1300 סמ'  ב'

 

Calculus - 4

Prerequisite: Calculus-3

Short syllabus:

1. Integration over manifolds in R^n:

Smooth manifolds in R^n, and their tangent spaces.

Integration over manifolds.

2. Divergence theorem:

Vector fields. Divergence theorem and its applications (Green's formulas, harmonic functions in R^n).

3. Line integrals:

Linear differential forms. Line integrals. Green's theorem and its application.

1. יריעות במרחב אוקלידי. מרחב משיק. אינטגרל ביריעה.

2. שדות וקטוריים. משפט דיווירגנץ ויישומיו (נוסחאות גרין פונקציות הרמוניות).

3. תבניות דיפרנציאליות. אנטגרל לאורך המסילה. משפט גרין ויישומיו.

 

0366-2194-01
 לוגיקה
 Logic
פרופ גיטיק מרדכישיעור ותשרייבר מתמטי008 א'1500-1200 סמ'  א'

תחשיב פסוקים, תחשיב הפרדיקטים ומשפט השלמות, יסודות תורת המודלים, משפט אי-השלמות.

 

0366219401 Logic.

Propositional Calculus. Compactness Theorem. Predicate Calculus. Formula. Struc-

ture. Henkin extensions. Compactness Theorem for First Order Logic. Loewenheim-Skolem

Theorem. Nonstandard Models of Arithmetic. Formal deduction. Goedel's Completeness

Theorem. Elementary substructures. Loewenheim-Skolem-Tarski Theorem. Goedel's In-

completeness Theorems. Tarski's Unde¯nability of Truth Theorem. Ultraproducts. Los

Theorem. Compactness via ultraproducts.

 

0366-2219-01
 גיאומטריה דיפרנציאלית
 Differential Geometry
פרופ בוחובסקי לבשיעור שרייבר מתמטי008 א'1800-1600 סמ'  א'
שיעור שרייבר מתמטי008 ב'1600-1500 סמ'  א'

  

(1)   עקומות ומשטחים.

יסודות של תורת עקומות. עקומות מישוריות עקומות במרחב. נוסחאות Frenet. חבורת טרנספורמציות אורתוגונליות. משטחים רגולריים, מטריקה. תבניות דיפרנציאליות הראשונה והשנייה. קווי עקמומיות על משטח. עקמומיות Gauss.

משוואות דריבציה ומשפט Bonnet. משפט Gauss. גזירה קובריאנטית וקווים גיאודזיים. משוואות Euler-Lagrange. נוסחת Gauss-Bonnet. משטחים מינימליים.  משטחים של עקמומיות קבועה. משטחים עם פרמטריזציה קונפורמלית. הצגצ Weierstrass.

(2)   גיאומטריה רימנית

מרחבים טופולוגיים. יריעות חלקות והעתקות חלקות. טנזורים. שיכון יריעות חלקות לתוך מרחב אוקלידי. אגד משיק וקו-משיק, שדות וקטוריים.  טנזור מטרי. קשירות אפינית וגזירה קובריאנטית. עקמומיות ופיתןל. קשירות רימנית (Levi-Civita). קווים גיאודזיים. דוגמאות: משטח Lobachevsky, מרחבים פסודו-אוקלידיים ויישומם בפיסיקה.

(3)   תבניות חיצוניות ואינטגרציה.

תבניות חיצוניות. דיפרנציאל De Rham. נגזרת Lie. אינטגרצית תבניות דיפרנציאליות.  אוריינטצית יריעות. יריעות עם שפה, נוסחת Stokes

 

0366-2219-02
 גיאומטריה דיפרנציאלית
 Differential Geometry
מר רוזן דניאלתרגיל שרייבר מתמטי008 ב'1500-1400 סמ'  א'

  

(1)   עקומות ומשטחים.

יסודות של תורת עקומות. עקומות מישוריות עקומות במרחב. נוסחאות Frenet. חבורת טרנספורמציות אורתוגונליות. משטחים רגולריים, מטריקה. תבניות דיפרנציאליות הראשונה והשנייה. קווי עקמומיות על משטח. עקמומיות Gauss.

משוואות דריבציה ומשפט Bonnet. משפט Gauss. גזירה קובריאנטית וקווים גיאודזיים. משוואות Euler-Lagrange. נוסחת Gauss-Bonnet. משטחים מינימליים.  משטחים של עקמומיות קבועה. משטחים עם פרמטריזציה קונפורמלית. הצגצ Weierstrass.

(2)   גיאומטריה רימנית

מרחבים טופולוגיים. יריעות חלקות והעתקות חלקות. טנזורים. שיכון יריעות חלקות לתוך מרחב אוקלידי. אגד משיק וקו-משיק, שדות וקטוריים.  טנזור מטרי. קשירות אפינית וגזירה קובריאנטית. עקמומיות ופיתןל. קשירות רימנית (Levi-Civita). קווים גיאודזיים. דוגמאות: משטח Lobachevsky, מרחבים פסודו-אוקלידיים ויישומם בפיסיקה.

(3)   תבניות חיצוניות ואינטגרציה.

תבניות חיצוניות. דיפרנציאל De Rham. נגזרת Lie. אינטגרצית תבניות דיפרנציאליות.  אוריינטצית יריעות. יריעות עם שפה, נוסחת Stokes

 

0366-3013-01
 סמינר במתמטיקה שימושית
 Seminar in Applied Mathematics
פרופ שקולניצקי יואלסמינר סמ'  ב'
סמינר ג'1400-1200 סמ'  ב'
Seminar in spectral methods for data analysis 0366.3013
 
During the past decade, the amount of data that needs to stored,processed, and analyzed has grown very rapidly, to the point where it becomes impossible to organize it using traditional approaches.The most common example is probably the WWW, for which Google is anexcellent example of bringing order into this gigantic cloud ofinformation. Other examples for massive data collections includecommunication networks, biological data, and image and audiodatasets. All these datasets are inherently unstructured andhigh-dimensional. Nevertheless, to make any use of such data, wemust be able to perform tasks such as visualization, clustering,classification, and rankings.
In this seminar, we will survey recent mathematical approaches fordescription and analysis of high-dimensional datasets, with emphasison spectral methods. In particular, we will try to understand themathematical foundations of algorithms for the aforementioned tasks.
 
סמינר בשיטות ספקטראליות לעיבוד מידע 0366.3013
 
במהלך העשור האחרון, כמות המידע שיש לאחסן, לעבד, ולנתח, גדלה במהירות רבה, עד לנקודה בה נהיה בלתי אפשרי לארגנו בעזרת שיטות קיימות. הדוגמה הנפוצה ביותר לסוגיה זו היא רשת האינטרנט, שעבורה Google היא דוגמה מצוינת ליצירת סדר בענן המידע העצום. דוגמאות נוספות לאוספי נתונים גדולים כוללות רשתות תקשורת, מידע ביולוגי, ומאגרי תמונות ושמע. המשותף לכל אוספי הנתונים הללו הוא היותם חסרי מבנה ורב-ממדיים. ולמרות זאת, על מנת להשתמש במידע מסוגים אלה, עלינו להיות מסוגלים לבצע פעולות כגון ויזואליזציה, סיווג (classification), דירוג (ranking), ו-clustering.
בסמינר זה נסקור גישות מתמטיות חדשניות לתיאור וניתוח של מידע רב מימדי, בדגש על שיטות ספקטראליות. בפרט, ננסה להבין את הבסיס המתמטי של אלגוריתמים לביצוע הפעולות שצוינו לעיל.
 
0366-3020-01
 משוואות דיפרנציאליות חלקיות 1
 Partial Differential Equations 1
פרופ שוחט סטיבןשיעור ה'1300-1000 סמ'  ב'

 

               סילבוס לקורס מד"ח 1
 
מבוא
אפינים וסינגולריות: שיטת האפינים למשוואה מסדר ראשון, התפשטות של גלים והתפתחות של סינגולריות, משוואת הגלים במימד 1+1,  סיווג של משוואות וצורות קנוניות.
שיטות פוריה: פתרונות מערכיים והפרדת משתנים, טורי פוריה והתמרת פוריה, מוצגות היטב והתנהגות אסימפטוטית, מבוא למרחבי סובולב.
 פונקציות גרין: קונבולוציה, דיסטריבוציות, סמטריה, משוואת החום, משוואת לפלס ופאוסון, משוואת הגלים.
אנרגיה: עקרון המקסימום, שיטת אנרגיה.
 
     Syllabus for PDE 1
 
Introduction
Characteristics and singularities: method of characteristics for a first-order equation, wave propagation and development of singularities, wave equation in one spatial dimension, classification of PDEs and canonical forms.
Fourier methods: Exponential solutions and separation of variables, Fourier series and transforms, well-posedness and long-time behavior, introduction to Sobolev spaces.
Green's functions: Convolution, distributions, and symmetry, heat equation, Laplace and Poisson equations, wave equation.
Energy: Maximum principle, energy method.
 
0366-3020-02
 משוואות דיפרנציאליות חלקיות 1
 Partial Differential Equations 1
מר כהנא אדרתרגיל ב'1100-1000 סמ'  ב'

 

               סילבוס לקורס מד"ח 1
 
מבוא
אפינים וסינגולריות: שיטת האפינים למשוואה מסדר ראשון, התפשטות של גלים והתפתחות של סינגולריות, משוואת הגלים במימד 1+1, מערכת היפרבולית מחוברת חלשה והתפשטות של סינגולריות, סיווג של משוואות וצורות קנוניות.
שיטות פוריה: פתרונות מערכיים והפרדת משתנים, טורי פוריה והתמרת פוריה, מוצגות היטב והתנהגות אסימפטוטית, מבוא למרחבי סובולב.
 פונקציות גרין: קונבולוציה, דיסטריבוציות, סמטריה, משוואת החום, משוואת לפלס ופאוסון, משוואת הגלים.
אנרגיה: עקרון המקסימום, שיטת אנרגיה.
 
     Syllabus for PDE 1
 
Introduction
Characteristics and singularities: method of characteristics for a first-order equation, wave propagation and development of singularities, wave equation in one spatial dimension, weakly coupled hyperbolic systems and propagation of singularities, classification of PDEs and canonical forms.
Fourier methods: Exponential solutions and separation of variables, Fourier series and transforms, well-posedness and long-time behavior, introduction to Sobolev spaces.
Green's functions: Convolution, distributions, and symmetry, heat equation, Laplace and Poisson equations, wave equation.
Energy: Maximum principle, energy method.
 
0366-3021-01
 מבוא למרחבי הילברט ותורת האופרטורים
 Introduction to Hilbert Spaces and Operator Theory
פרופ שוחט סטיבןשיעור פיזיקה-שנקר204 א'1500-1200 סמ'  א'

מרחבים ליניאריים בעלי ממד אינסופי, מרחבי בנך והילברט.

 הגיאומטריה של מרחבי הילברט, הלמה של ריס למרחבי בנך.

 פונקציונאליים ליניאריים, משפט האן-בנך, התכנסות חלשה, עקרון החסימות במדה שוה.

 אופרטורים לינאריים, משפט ההעתקה הפתוחה ומשפט הגרף הסגור למרחבי הילברט.

 אופרטור קומפקטי, תורת פרדהולם.

 התורה הספקטרלית של אופרטורים קומפקטיים צמודים לעצמם ושימושים למד"ר.

 מבוא למרחבי סובלב.

 

 

Infinite-dimensional linear spaces, Banach and Hilbert spaces.

Geometry of Hilbert spaces, lemma of Riesz for Banach spaces.

Linear functionals, Hahn-Banach theorem, weak convergence, uniform boundedness principle.

Linear operators, open mapping theorem and closed graph theorem for Hilbert spaces.

Compact operators, Fredholm theory.

Spectral theory for compact self-adjoint operators and applications to ODEs.

Introduction to Sobolev spaces

0366-3021-02
 מבוא למרחבי הילברט ותורת האופרטורים
 Introduction to Hilbert Spaces and Operator Theory
מר מיץ רועיתרגיל אורנשטיין111 ב'1000-0900 סמ'  א'

מרחבים ליניאריים בעלי ממד אינסופי, מרחבי בנך והילברט. הגיאומטריה של מרחבי הילברט. פונקציונאליים ליניאריים ואופרטורים. משפט האן-בנך ויישומיו. אופרטורים קומפקטיים ותורת פרדהולם במרחבי בנך. אופרטורים קומפקטיים צמודים לעצמם. תורת הילברט-שמידט, עקרון המיני-מכס וערכים עצמיים. התורה הספקטרלית של אופרטורים חסומים צמודים לעצמם ואופרטורים אוניטריים.

 

 

 

0366-3022-01
 מבוא לאנליזה פונקציונלית
 Introduction to Functional Analysis
פרופ בן-ארצי אשרשיעור פיזיקה-שנקר105 ד'1900-1600 סמ'  א'
1. מרחבי בנך, פונקציונלים ואופרטורים, המרחב הצמוד, רפלקסיביות, טופולוגיות חלשות, משפטי ההעתקה הפתוחה, הגרף הסגור ובנך-שטיינהאוס. משפט האן-בנך והפרדת קבוצות קמורות, משפט קריין-מילמן.
2. אלגבראות בנך, אידאלים מקסימלים, משפט גלפנד-ניימרק.
3. תורה ספקטרלית של אופרטורים אוניטרים, אופרטורים סימטרים לא חסומים, הרחבות צמודות לעצמן, משפט ספקטרלי לאופרטורים לא חסומים הצמודים לעצמם.

 

 

0366-3022-02
 מבוא לאנליזה פונקציונלית
 Introduction to Functional Analysis
מר ארז רןתרגיל פיזיקה-שנקר105 ג'1500-1400 סמ'  א'

מרחבי בנך, פונקציונלים ואופרטורים, המרחב הצמוד, רפלכסיביות, טופולוגיות חלשות, בסיסים.

 

 

0366-3025-01
 מבוא לאנליזה הרמונית
 Harmonic Analysis
ד"ר אידלמן יולישיעור א'1300-1200 סמ'  ב'
שיעור ג'1200-1000 סמ'  ב'

טורי פוריה: המערכת הטריגונומטרית ופיתוח פוריה. תנאים להתכנסות נקודתית והתכנסות במידה שווה של טור פוריה. מבחני Jordan ו- Dini. עיקרון הלוקליזציה. תופעת גיבס. גרעין Fejer והתכנסות הממוצעים. התכנסות ב- L2 (T). שלמות המערכת הטריגונומטרית. משפט Riesz-Fisher.

 

טרנספורם פוריה: טרנספורם פוריה ב- L2 (R). משפט פלנשרל וטרנספורם פוריה ב- L2 (R). משפט ההיפוך. נוסחת הסיכום של פואסון. 

 

שימושים למשוואות דיפרנציאליות

 

0366-3036-01
 קומבינטוריקה בסיסית
 Basic Combinatorics
פרופ שפירא אסףשיעור ג'1800-1500 סמ'  ב'

Combinatorics - Spring '12

Instructor: Dr. Asaf Shapira

 

Prerequisites to Combinatorics.First year courses in mathematics, most notably Discrete Mathematics or Introduction

Course Overview:

Mathematics or Computer Science. We will cover more advanced topics compared to the course

Introduction to Combinatorics and Graph Theory (0366.1123). The level of difficulty will be comparable

to that of Introduction to Graph Theory (0366.3267).

We will cover and touch upon a variety of topics in Combinatorics, like Ramsey Theory, Extremal

Graph Theory, Extremal Set Theory, the Partition Function and Enumerative Problems.

We will also encounter a variety of tools and techniques, like Generating Functions, the Probabilistic

Method and tools from Linear Algebra.

The course is intended for second and third year undergraduate students in

Suggested Reading

:



Combinatorics: Topics, Techniques, Algorithms, by P. Cameron, 1994.



Invitation to Discrete Mathematics, by J. Matouˇsek and J. Neˇsetˇril (Second Edition), 2008.



(Second Edition), 2011.

How to Count: An Introduction to Combinatorics, by R.B.J.T. Allenby and A. Slomson




A Course in Combinatorics, by J.H. van Lint and R.M. Wilson (2nd


edition), 2001.
0366-3097-01
 אנליזה נומרית 2
 Numerical Analysis 2
ד"ר דיטקובסקי עדישיעור ה'1500-1200 סמ'  ב'

 

1. שיטות לבעיות התחלה
 
מושגי יסוד: שגיאה, התכנסות, עקביות, יציבות, סדר דיוק, משפטי התכנסות וסדר.
 
שיטות: שיטות רונגה-קוטה, שיטות רב-צעדיות, שיטות חיוץ (אקסרפולציה).
 
נושאים מתקדמים: גודל צעד משתנה, קשיחות, שיטות גיאומטריות.
 
2. שיטות לבעיות שפה
 
בעיות שפה, שיטות צליפה, שיטות הפרשים סופיים.
 
 
In 2012-2013, the topic of the course will be numerical methods for ODEs
 
  1.  Methods for initial-value problems
Basic concepts: error, convergence, consistency, stability, order of accuracy, convergence theorem.
 
Methods: Runge-Kutta methods, multistep methods, extrapolation methods
 
Advanced topics: variable step size, stiffness, geometric methods
 
 2Boundary-value problems
  •  
boundary-value problems, shooting methods, methods of finite differences
 
 
0366-3098-01
 הסתברות למתמטיקאים
 Probability for Mathematicians
פרופ פלד רוןשיעור ד'1300-1000 סמ'  ב'

יסודות ההסתברות המבוססת על תורת המידה: מרחבי הסתברות, מאורעות, משתנים מקריים, אי-תלות, תוחלת, שונות והתניות.
משפטים בסיסיים: הלמות של בורל קנטלי, החוק החזק של המספרים הגדולים, חוק - 0-1 של קולמוגורוב.
תורת המרטינגלים בזמן בדיד ושימושיהם.
התכנסות חלשה של מידות הסתברות ומשפט הגבול המרכזי.

ספר הקורס : David Williams, Probability with Martingales

0366-3098-02
 הסתברות למתמטיקאים
 Probability for Mathematicians
מר לונדנר איתיתרגיל ב'1200-1100 סמ'  ב'

0366.3098.01-הסתברות למתמטיקאים

מושגים יסודיים: מרחב מִדיד, מִדת הסתברות, מרחב הסתברות, אבר מקרי והתפלגותו

, שדה-סיגמה הנוצר על ידי אברים מקריים.

משתנים מקריים: מדידות, תוחלת, הלמה הראשונה של בורל-קנטלי

.

אי תלות: שדות סיגמה בלתי תלויים, אברים מקריים בלתי תלויים, מאֹרעות

בלתי תלויים. הלמה השניה של בורל-קנטלי. חֹק האפס-אחד של קולמוגורוב.

שונות, שונות משותפת, מִתאָם. החק החלש והחק החזק של המספרים הגדולים

, מספרים נורמליים.

התנייה: חיזוי הטוב ביותר. דיסאנטגרציה של מִדות

 

 

.מרטינגלים: פילטרציות, תהליך מֻתאם. זמן עצירה, משפט העצירה של Doob.התכנסות מרטינגלית.

משפט הגבול המרכזי: התכנסות בהתפלגות. משפט הגבול המרכזי

0366-3115-01
 אנליזה על יריעות
 Analysis on Manifolds
פרופ אוסטרובר ירוןשיעור ות א'1200-0900 סמ'  ב'

This is a course for undergraduate and graduate mathematics and physics students. Its purpose is to give an introduction to the theory of manifolds -- topological spaces which locally look as the usual Euclidean space but may have a complicated global shape. Manifolds play a basic role in modern mathematics and mathematical physics.

We will cover the following topics:

1) Manifolds (definition, examples, constructions).
2) Topological properties of manifolds and partition of unity.
3) Tangent space and the differential.
4) Immersions, submersions, and submanifolds.
5) Embedding and Whitney's theorem.
6) Vector fields and flows (Lie bracket & Lie derivative).
7) Orientation. 
8) Degree of a map (and applications: Brouwer fixed point, Borsuk-Ulam, the "hairy ball" theorem, etc.).
9) Differential forms.
10) Integration on manifolds (Stokes theorem).
11) de Rham cohomology.
If time permits:
12) Vector bundles, parallel transport, connection and covariant differentiation, curvature.

 

 

 

 

 

0366-3117-01
 הצגות של חבורות סופיות
 Representations of Finite Groups
פרופ בורובוי מיכאלשיעור ה'1700-1400 סמ'  א'

הצגה אי-פריקה, תת-הצגה, הצגת מנה,  הצגה מושרה, הצגה דואלית, הצגה אוניטרית, מכפלה טנזורית של הצגות, כרקטר של הצגה, פירוק ז'ורדן-הלדר של הצגה ממימד סופי, הומומורפיזם של הצגות, פירוק לסכום ישר של תת-הצגות, יחידות הפירוק, הלמה של שור, מרכיבים איזוטיפיים של הצגה, תיאור אלגברת ההומומורפיזמים של הצגה ממימד סופי כסכום ישר של אלגבראות מטריצות, משפט ברנסייד,  מקדמים מטריציוניים של הצגה,  אי תלות של כרקטרים אי-פריקים,  תיאור ההצגות האי-פריקות של מכפלה קרטזית של חבורות, יחסי האורתוגונליות של שור לחבורה סופית, הפירוק של ההצגה הרגולרית של חבורה סופית, הדדיות פרובניוס, קריטריון אי-פריקות של הצגה מושרה, ההצגות האי-פריקות של חבורה סופית שהיא מכפלה חצי ישרה של חבורה וחבורה אבלית נורמלית, אלגברת החבורה של חבורה סופית, האיזומורפיזם שלה לסכום ישר של אלגבראות מטריצות, המרכז של אלגברת החבורה, תכונות שלמות של כרקטרים, המימד של הצגה אי-פריקה מחלק את סדר החבורה, הצגות ממשיות, משפט פרובניוס-שור בדבר הצגה אי-פריקה השומרת תבנית סימטרית.

 

נושאים נוספים: הצגות של חבורה קומפקטית (למשל,  החבורה האורתוגונלית בשלושה משתנים), הצגות של חבורת התמורות, הצגות של (2)GL מעל שדה סופי.

 

 

 

 

 

0366-3126-01
 תורת הקבוצות
 Set Theory
פרופ גיטיק מרדכישיעור פיזיקה-שנקר105 ג'1900-1600 סמ'  א'

שוויון עוצמות, משפט קנטור-ברנשטיין. קבוצות בנות-מניה, קבוצת החזקה, סדרים קוויים, משפט האיזומורפיזם של קנטור. בניית המספרים הממשיים, חתכי דדקינד, משפט היחידות. אריתמטיקה של עוצמות, עוצמת הרצף. קבוצות סדורות היטב, משפט האיזומורפיזם. מספרים סודרים, אכסיומת ההחלפה, אינדוקציה טרנספיניטית, אריתמטיקה של מספרים סודרים, מספרים מונים, חיבור וכפל שלהם. אכסיומת הבחירה, שקילות בינה, בין משפט הסדר הטוב, ובין הלמה של צורן. יישומים של אכסיומות הבחירה. קבוצות של מספרים ממשיים. עוצמה של קבוצה מושלמת, משפט קנטור-בנדיקסון, קבוצות בורל. אריתמטיקה של מספרים מונים, סכומים ומכפלות אינסופיים. משפט קניג. קו-פינליות של מספרים מונים. מספרים מונים סדירים וחריגים. חזקות של מספרים מונים. השערת הרצף. קבוצות חלקיות סגורות ולא חסומות, קבוצות שבת, הלמה של פודור. מערכות דלתה. אידיאלים ומסננים. בעיית המידה, משפט אולם (Ulam). השערת המונים החריגים, משפט Silver.

 

K. Hrbacek and T. Jech: Introduction to Set Theory.

 

 

 

ספר מומלץ:

 

 

 

 

0366312601 Set Theory.

Cardinality of a set. Cantor-Bernstein Theorem. Countable sets. Sets of intergers,

rationals, algebraic numbers. Linear orderings, uniqueness of reals. Uncountable sets. The

cardinality of the Continuum. Well-Ordered Sets. Ordinal Numbers. Trans¯nite Induction.

Ordinal Arithmetic. Alephs. The Axiom of Choice. Cardinals Arithmetic. Konig's Theorem.

Regular and Singular Cardinals. Sets of reals. Cantor -Bendickson Theorem. Borel Sets.

Filters and Ultra¯lters. Closed Unbounded and Stationary sets. Fodor's Lemma. Splitting

of a stationary set. Delta Systems. The Measure Problem. Ulam's Theorem. Real valued

measurable cardinals. Measurable cardinals. Normal ultra¯lters. Silver's Theorem.

1

 

0366-3126-02
 תורת הקבוצות
 Set Theory
מר בן-אמו תוםתרגיל פיזיקה-שנקר105 ב'1700-1600 סמ'  א'

שוויון עוצמות, משפט קנטור-ברנשטיין. קבוצות בנות-מניה, קבוצת החזקה, סדרים קוויים, משפט האיזומורפיזם של קנטור. בניית המספרים הממשיים, חתכי דדקינד, משפט היחידות. אריתמטיקה של עוצמות, עוצמת הרצף. קבוצות סדורות היטב, משפט האיזומורפיזם. מספרים סודרים, אכסיומת ההחלפה, אינדוקציה טרנספיניטית, אריתמטיקה של מספרים סודרים, מספרים מונים, חיבור וכפל שלהם. אכסיומת הבחירה, שקילות בינה, בין משפט הסדר הטוב, ובין הלמה של צורן. יישומים של אכסיומות הבחירה. קבוצות של מספרים ממשיים. עוצמה של קבוצה מושלמת, משפט קנטור-בנדיקסון, קבוצות בורל. אריתמטיקה של מספרים מונים, סכומים ומכפלות אינסופיים. משפט קניג. קו-פינליות של מספרים מונים. מספרים מונים סדירים וחריגים. חזקות של מספרים מונים. השערת הרצף. קבוצות חלקיות סגורות ולא חסומות, קבוצות שבת, הלמה של פודור. מערכות דלתה. אידיאלים ומסננים. בעיית המידה, משפט אולם (Ulam). השערת המונים החריגים, משפט Silver.

 

K. Hrbacek and T. Jech: Introduction to Set Theory.

 

 

 

ספר מומלץ:

 

 

 

 

0366312601 Set Theory.

Cardinality of a set. Cantor-Bernstein Theorem. Countable sets. Sets of intergers,

rationals, algebraic numbers. Linear orderings, uniqueness of reals. Uncountable sets. The

cardinality of the Continuum. Well-Ordered Sets. Ordinal Numbers. Trans¯nite Induction.

Ordinal Arithmetic. Alephs. The Axiom of Choice. Cardinals Arithmetic. Konig's Theorem.

Regular and Singular Cardinals. Sets of reals. Cantor -Bendickson Theorem. Borel Sets.

Filters and Ultra¯lters. Closed Unbounded and Stationary sets. Fodor's Lemma. Splitting

of a stationary set. Delta Systems. The Measure Problem. Ulam's Theorem. Real valued

measurable cardinals. Measurable cardinals. Normal ultra¯lters. Silver's Theorem.

1

 

0366-3143-01
 גיאומטריה לא אויקלידית
 Non Euclidean Geometry
פרופ פולטרוביץ לאונידשיעור שרייבר מתמטי007 ב'1900-1600 סמ'  א'

איזומטריות של מרחב אוקלידי. חבורות דיסקרטיות של איזומטריות במישור. משטחים: טורוס, סרט Möbius, בקבוק Klein. הגבלות כריסטלוגרפיות. ביליארדים. גופים פלאטוניים. נוסחת Euler דרך גיאומטריה ספירית. איזומטריות, מספרים מרוכבים וקוואטרניונים. טרנספורמציות ליניאריות-שבריות. יסודות של גיאומטריה רימנית: אורך, מרחק, קווים גיאודזיים. מישור היפרבולי (מודל של Poincaré). קווים גיואדזיים ואיזומטריות. גיאומטריה היפרבולית יסודית. האקסיומה של מקבילים. טרנספורמציות של Galileo ו- Lorentz. מרחב Minkowski ותורת היחסות. פסיודו-ספירה ומודלים אחרים של מישור היפרבולי. חבורות דיסקרטיות של איזומטריות היפרבוליות. תחום פונדמנטלי. חבורה מודולרית.

דרישות מוקדמות:

אלגברה ליניארית 1 ו-2, אלגברה ב-1.

ספרי לימוד:

1.A. Beardon. The geometry of discrete groups.

2. M. Berger. Geometry.

3. C. Caratheodori. Theory of functions of a complex variable, I, II.

4. H. Coxeter. Introduction to geometry

5. B. Dubrovin, A. Fomenko, S. Novikov. Modern Geometry – methods and applications, I, II.

6. I. Gelfand, M. Graev, I. Piatetskii-Shapiro. Representation theory and automorphic functions.

0366-3267-01
 תורת הגרפים
 Graph Theory
ד"ר סמוטי וויצ'ךשיעור ותאורנשטיין102 א'1800-1500 סמ'  א'

מושגים בסיסיים, עצים, קשירות ומשפט מנגר, מעגלי אוילר והמילטון, זיווגים, משפטי הול וטט, צביעות, משפטי ברוקס וויזינג, קבוצות בלתי תלויות וקליקות, משפט טורן, משפט רמזי, גרפים מישוריים. הקורס יינתן בשפה האנגלית

Among topics that will be covered in the class are the following: graphs and subgraphs, trees, connectivity, Euler tours, Hamilton cycles, matchings, Hall's theorem and Tutte's theorem, edge coloring and Vizing's Theorem, independent sets, Turán's theorem and Ramsey's theorem, vertex coloring, planar graphs, directed graphs, probabilistic methods and linear algebra tools in graph theory.

Prerequisite courses: Discrete mathematics or Introduction to combinatorics and graph theory, Linear algebra, and Introduction to probability.

Homework exercises will be given during the course and will account for 10% of the final grade. There will also be a final exam.

The course will be taught in English

0366-3292-01
 אלגברה ב 3
 Algebra B 3
פרופ סודרי דודשיעור קפלון118 ב'1900-1700 סמ'  א'
שיעור קפלון118 ה'1800-1700 סמ'  א'
חוגים והומומורפיזמים שלהם, אידיאלים. חוג חילופי, אידיאל ראשוני, תחום שלמות. התחלקות בתחום ראשי ובתחום אוקלידי. מודולים והומומורפיזמים שלהם. מודולים מעל תחום ראשי, צורה נורמלית של Jordan של מטריצה. מיקום של חוגים ומודולים, שדה מנות. המושגים של קטגוריה ופונקטור. מכפלה טנזורית, הרחבת סקלרים. סדרה מדוייקת ופונקטור מדוייק. מודולים שטוחים ופרוייקטיביים. האלגבראות הטנזורית, הסימטרית והחיצונית של מודול. חוג נתרי, משפט הבסיס של Hilbert. הפירוק הפרימרי של חוג. הרחבות שלמות של חוגים. למה של Nakayama. הרחבות של הומומורפיזמים. השלמה של חוג ומודול ביחס לאידיאל. חוגים ומודולים מדורגים, למה של Artin-Riesz. הרחבות טרנסצנדנטיות של שדות. משפט האפסים (Nullstellensatz) של Hilbert. משפט Noether. יריעה אלגברית אפינית. ספקטר ראשוני של חוג.
0366-3292-02
 אלגברה ב 3
 Algebra B 3
מר שוסטרמן מרקתרגיל קפלון118 ה'1900-1800 סמ'  א'
חוגים והומומורפיזמים שלהם, אידיאלים. חוג חילופי, אידיאל ראשוני, תחום שלמות. התחלקות בתחום ראשי ובתחום אוקלידי. מודולים והומומורפיזמים שלהם. מודולים מעל תחום ראשי, צורה נורמלית של Jordan של מטריצה. מיקום של חוגים ומודולים, שדה מנות. המושגים של קטגוריה ופונקטור. מכפלה טנזורית, הרחבת סקלרים. סדרה מדוייקת ופונקטור מדוייק. מודולים שטוחים ופרוייקטיביים. האלגבראות הטנזורית, הסימטרית והחיצונית של מודול. חוג נתרי, משפט הבסיס של Hilbert. הפירוק הפרימרי של חוג. הרחבות שלמות של חוגים. למה של Nakayama. הרחבות של הומומורפיזמים. השלמה של חוג ומודול ביחס לאידיאל. חוגים ומודולים מדורגים, למה של Artin-Riesz. הרחבות טרנסצנדנטיות של שדות. משפט האפסים (Nullstellensatz) של Hilbert. משפט Noether. יריעה אלגברית אפינית. ספקטר ראשוני של חוג.
0366-3333-01
 חיזוי רב ממדי וישומיו
 Multidimensional Visualization and Its Applications
פרופ אנסלברג אלפרדשיעור אורנשטיין110 א'1800-1500 סמ'  א'

המטרה היא הצגת מידע במספר משתנים/מימדים. באמצעות קואורדינאטות מקבילות ניתן להציג עצמים ויחסים ליניאריים, ולא ליניאריים, במספר מימדים, בלא איבוד אינפורמציה. הפיתוח מודגם באמצעות יישומים בכריית מידע (Data Mining), ויזואלי ואוטומטי, וסטטיסטיקה במאגרי מידע במספר מימדים רב, מניעת התנגשויות בבקרה אווירית, מודליזציה גיאומטרית, ראיה ממוחשבת ומערכות תומכות החלטה (עם מודלים לא ליניאריים- פיננסיים, בקרת תהליכים וכו')

 

Prof. Alfred Inselberg (aiisreal@post.tau.ac.il) – Office 325 Kaplun.

Class meets on Sundays 15:00-18:00, Room 008 Schreiber Bldg

 

 

Visualizing Multidimensional Geometry and its Applications

Math 0366-3333-011

SYLLABUS – with many interactive demonstrations

First lecture: Introduction to Scientific, Information and Multidimensional Visualization

 – Course overview

Projective Geometry – Foundations, Duality, Homogeneous Coordinates, -  2 Lectures  

Parallel Coordinates in the Plane1/2 Lecture

 – Dualities, Transformations,

--  Visual and Automatic Data Mining1/2 Lecture

Lines in N-space2 Lectures

– Representations of Lines

– Distance & Proximity Properties                         

Applications : Collision Avoidance Algorithms for Air Traffic Control.  

Coplanarity 2 Lectures

– 2 Representations of Planes, Flats & Hyperplanes

– Recursive Mapping, dualities and demos

– “Near Coplanarity” – a central problem in many applications,  

-- Data Mining, Geometric Modeling, Computer Vision, Statistics
•  Curves – 1 1/2 Lectures including theory of Envelopes

Proximities (Topologies) – Lines, Planes and Hyperplanes 1 Lecture.              

   Demos and applications to Geometric Modeling (with Tolerances),  

   Statistics, Approximations

 • Hypersurfaces in N-space2 Lectures, Representation in terms of  (N −1) planar regions. Classes of surfaces: Developable, Ruled, Algebraic, Convex, some Non-Convex

and Non-orientable. Detecting convexity and non-convexities with their properties visually from their representation. This is preferable than the standard surface descriptions even for 3-D. Interior Point Algorithms, More on Data Mining, Decision Support & Process Control, (Trade-Off Analysis, Sensitivities and Interrelations, Impact of Constraints, a little on Optimization),

Automatic Rule Finder (Classifier for Data Mining), Research Topics.

Newest topics - 1 Lecture – To See C2 – visualizing complex valued functions – Visualizing Large Networks – topological and other properties – BIG DATA – a timely important problem

• Time permitting – students can choose and present on various topics in Visualization,

Course grade = .8 (Exercises) + .2 Final Exam

The course notes and exercises (in English) will given to the students. Exercises will be assigned and graded weekly.  Prerequisite: Linear Algebra

Textbook, A. Inselberg, Parallel Coordinates: Visual Multidimensional Geometry and its Applications – several copies in the library. 

Gallery of Data Visualization-Michael Friendly-www.math.yorku.ca/scs/SCS/Gallery/milestones

Multidimensional Visualization and its Applications

 (Math 0366-3333-011)

 

Visualization systematically incorporates our fantastic pattern recognition ability into the problem-solving process.  With parallel coordinates the perceptual barrier imposed by our 3-dimensional habitation is breached enabling the visualization of multidimensional problems. Beginning with some projective geometry the mathematical foundations are developed. Multidimensional lines and (hyper)planes are recognized even in the presence of errors. Applications include Collision Avoidance Algorithms for Air Traffic Control, Data Mining for High-Dimensional datasets (some with hundreds of variables), Automatic Classification (feature extraction), and more. Properties of (hyper)surfaces are visually detected from their representation, convexity is seen in any dimension as well as non-convexities (i.e. folds, bumps, depressions etc) also non-orientability (i.e. Moebius Strip). The topics are illustrated with many interactive demonstrations and further applications on Decision Support (Trade-off Analysis), Topics in Statistics, Process Control, Analysis of Large Networks, Visualizing Complex Valued Functions. Lecture notes with many visuals will be provided. Grade (80%) is based on homework (every week) and a Final Examination (20%). The course is suitable for good 2nd & 3rd year as well as M.Sc. and Ph.D. students. Linear Algebra and a course on Algorithms with Data Structures are prerequisites -- or consent of the instructor.

 

0366-3405-01
 סמינר בקומבינטוריקה
 Undergraduate Seminar in Combinatorics
פרופ שפירא אסףסמינר שרייבר מתמטי008 ג'1300-1100 סמ'  א'
סמינר סמ'  א'
בתאום עם מרצה במפגש הראשון

0366.3405 

Prospective audience: the seminar is intended for third year undergraduate students in Mathematics or Computer Science.

 

Prerequisites: first year courses in mathematics, most notably Discrete Mathematics or Introduction to Combinatorics. Working knowledge of basic graph theory notions (as provided for example by the Graph Theory course) would be very helpful.

 

The seminar will be devoted to a variety of topics in Graph Theory and Combinatorics, that are normally not covered by our Graph Theory course. The subjects to be presented will be quite diverse and essentially unrelated.

 

The seminar’s aim is to acquaint its participants with attractive theorems, proofs and techniques from Graph Theory and Combinatorics, and also to provide them with an opportunity to work independently with advanced texbooks and research papers.

 

 

 

0366.3405 סמינר בקומבינטוריקה לתואר ראשון

 

הסמינר מיועד לסטודנטים של שנה שלישית של תואר ראשון במתמטיקה או במדעי המחשב.

 

דרישות קדם: קורסים של שנה ראשונה במתמטיקה, במיוחד מתמטיקה בדידה או מבוא לקומבינטוריקה. ניסיון עם מושגים בסיסיים בתורת הגרפים (הניתן למשל בקורס בתורת הגרפים) יועיל.

 

הסמינר יוקדש למבחר נושאים בקומבינטוריקה ובתורת הגרפים, אשר לא מכוסים בדרך כלל בקורס שלנו בתורת הגרפים. הנושאים אשר יידונו בסמינר יהיו מגוונים ולאו דווקא קשורים. מטרת הסמינר היא להכיר למשתתפיו נושאים, משפטים וטכניקות אטרקטיביים בקומבינטוריקה ובתורת הגרפים ולהקנות להם ניסיון  בעבודה עצמאית עם ספרי לימוד מתקדמים ומאמרי מחקר בנושאים אלה. 
0366-4093-01
 סמינר בגיאומטריה ודינמיקה
 Seminar in Geometry and Dynamics
פרופ אוסטרובר ירוןסמינר שרייבר מתמטי309 ד'1600-1400 סמ'  א'

סמינר בגאומטריה ודינמיקה

(Seminar in Geometry and Dynamics)

 

מ”ס קורס: 0366-4093-01

 

The syllabus is decided by the organizers on the first meeting of the seminar.

0366-4427-01
 סמינר מחקר באנליזה 2
 Research Seminar in Analysis 2
פרופ סודין מיכאלסמינר ג'1600-1400 סמ'  ב'
המשך מסמ' באנליזה 1
0366-4903-01
 יסודות בטופולוגיה אלגברית
 Basic Algebraic Topology
פרופ שוסטין יבגנישיעור כיתות דן דוד204 ב'1900-1600 סמ'  א'

 

מבוא: דוגמאות מרחבים טופולוגיים (יריעות, מרחבי העתקות, מרחבים תאיים).

הומוטופיה, שקילות הומוטופית, פונקטור הומוטופי, מבנה חבורתי הומוטופי.

חבורה יסודית, משפט Van Kampen, כיסוי, מיון כיסויים.

חבורות הומוטופיות בכירות, פיברציות, סדרות מדויקות של חבורות הומוטופיות, חבורות הומוטופיות של ספירות, משפטי Freudenthal, Brouwer, Whitehead.

קומפלקס שרשרתי סינגולרי. הומולוגיה סינגולרית. אינבריאנטיות הומוטופית.

סדרות מדויקות הומולוגיות: סדרה של זוג, שלישייה, Mayer-Vietoris.

הומולוגיה של מרחב תאי. הומולוגיה והומוטופיה, משפט Hurewicz, משפט Whitehead הומולוגי.

הומולוגיה עם מקדמים, קוהומולוגיה, נוסחאות מקדמים אוניברסליים. נוסחת Künneth. מכפלות U ו- ∩, חוג קוהומולוגי.

הומולוגיה וקוהומולוגיה של יריעות, מחלקה יסודית, איזומורפיזם ודואליות Poincaré ו- Alexander-Pontryagin. נוסחת Lefschetz.

 

 

 

 

דרישות מוקדמות:

אלגברה ליניארית 1,2, גיאומטריה דיפרנציאלית, חדו''א 2 , טופולוגיה.

 

 

ספרי לימוד:

1. A. Fomenko, D. Fuchs, V. Gutenmacher. Homotopic topology.

2. A. Hatcher. Algebraic topology.

3. R. Switzer. Algebraic topology – Homology and homotopy

Introduction: examples of topological spaces (manifolds, spaces of maps, CW spaces). Homotopy, homotopy equivalence, homotopy functor, homotopy groups. Fundamental group, van Kampen theorem, covering spaces, classification of covering spaces. Higher homotopy groups, fibred spaces, exact homotopy sequences, homotopy groups of spheres. Theorems of Freudenthal, Browder, Whitehead. Singular chain complex, singular homology, homotopy invariance, excision isomorphism. Exact homology sequences (pair, triple, Mayer-Vietoris). Homology of CW spaces. Homology and homotopy, theorems of Hurewicz and Whitehead. Homology with coefficients, cohomology, the universal coefficient theorem. The cup-, cap-, and cross-product, Kunneth theorem. Cohomology ring. Homology of manifolds, fundamental class, Poincare isomorphism and duality, Alexander-Pontryagin duality. Lefschetz formulas.

 

Prerequisites: Linear Algebra 1,2,  Topology, Differential Geometry, Calculus 1,2.

 

 

Bibliography:

. A. Fomenko, D. Fuchs, V. Gutenmacher. Homotopic topology.

. A. Hatcher. Algebraic topology.

. R. Switzer. Algebraic topology – Homology and homotopy.

0366-5055-01
 סמינר הורוביץ בהסתברות, תורה ארגודית ומערכות דינמיות
 Horowitz Seminar on Probability, Ergodic Theory and Dynamics
פרופ פלד רוןסמינר שרייבר מתמטי309 ב'1600-1400 סמ'  א'
סמינר ב'1600-1400 סמ'  ב'

סמינר המחקר המחלקתי בתורת ההסתברות, תורה ארגודית ומערכות דינמיות.

The departmental research seminar on Probability Theory, Ergodic Theory and Dynamical Systems.

0366-5087-01
 משטחים: גרפים, חבורות ושימושים
 Surfaces: Graphs, Groups and Applications
ד"ר פודר בן נעים דורוןשיעור א'1500-1300 סמ'  ב'
שיעור ד'1300-1200 סמ'  ב'

נעסוק במבחר נושאים הקשורים למשטחים. הנושאים המדוייקים ייבחרו במהלך הקורס בשיתוף הסטודנטים. הנה כמה נושאים לדוגמא:

- מיון משטחים

- חבורת המחלקות של משטח (mapping class group) ותכונות בסיסיות שלה

- שימוש בגרפים על משטחים לחישובים במטריצות מקריות

- קומפלקס הקשתות של הארר

- אורך קומוטטור של מלים חופשיות ומשפט הרציונליות של קלגרי

We shall discuss several topics. Some of the exact topics will be agreed upon with the students during the class. The following list contains some possible topics:

- Classification of surfaces

- The Mapping Class Group of a surface and its basic properties

- Using graphs on surfaces for computations in random matrices

- Harer's Arc Complex

- The commutator lengh of words and Calegari's rationality theorem