| |||||||||||||||||||||||||||||||||
שיטות צפייה ובקרה תוך זמן סופי
Methods of Finite-Time Control and Observation |
0372-4007 | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
מדעים מדויקים | |||||||||||||||||||||||||||||||||
|
תאוריית הבקרה המתמטית הקלאסית עוסקת במערכות המתוארות על-ידי משוואות דיפרנציאליות רגילות המכילות אות הבקר. ערך הבקר נקבע בזמן אמת על סמך מדידות פלטים שבוצעו בעבר ובהווה. משימות הבקרה הסטנדרטיות הן ייצוב, צפייה ועקיבה. שיטות סטנדרטיות של בקרה לינארית ולא-לינארית משתמשות במודל המתמטי המדויק, ובמקרה הטוב פותרות את הבעיות בצורה אסימפטוטית.
קורס זה מלמד את השיטות החדשות ביותר לבקרה בתנאי אי-וודאות קשים. השיטות פותרות את הבעיות הנ"ל במדויק ובזמן סופי, או אפילו בזמן שנקבע מראש. הגישה מצוטטת באלפי מאמרים והוכיחה את עצמה ברובוטיקה, באוויוניקה וטיסה בחלל, בעיבוד אותות ותמונות ובפיתרון סוגים שונים של בעיות כיוון למטרה ועקיבה.
קורס זה משלים את הקורס "פרקים בבקרה לא-לינארית", אך בלתי תלוי בו. המושגים הקלאסיים של יציבות, סדר יחסי (relative degree), צורות נורמליות ,בקרת משוב-פלט וצפייה (output-feedback control and observation) ותאוריית פיליפוב (Filippov) של משוואות דיפרנציאליות רגילות אי-רציפות יילמדו בקצרה. בהמשך הקורס מכסה את תורת ההומוגניות של הכלות דיפרנציאליות, צפייה לא-לינארית, סינון וגזירה מדויקת וחסינה לרעשים, תאוריית יציבות בזמן סופי ובזמן שנקבע מראש (finite- and fixed-time stability theory), תורת הבקרה במצבי החלקה, סדר יחסי פרקטי ובקרת קופסא שחורה מתמטית. העמידות (robustness) של השיטות מאומתת בנוכחותן של דגימות מורעשות והפרעות מערכתיות. יילמדו מימושים דיגיטליים ושיטות דיסקרטיזציה, ודיוקם יוערך.
בסוף הקורס על כל סטודנט להציג עיצוב בקר לא-לינארי עבור מערכת אי-וודאית פשוטה מרובת קלטים ופלטים עם מדידות מורעשות ולוודא את יעילותו בסימולציה.
רקע נדרש: קורסים סטנדרטיים במשוואות דיפרנציאליות רגילות, באלגברה לינארית ובחדו"א.
עמוד הבית של הקורס: http://www.tau.ac.il/~levant/fintime/index.html
The classical mathematical-control theory studies systems described by ordinary differential equations (ODEs) containing control signal. The control values are chosen using past and present output measurements. The standard control tasks are stabilization, observation and tracking. Standard methods of linear and nonlinear control require the exact mathematical-model knowledge, and in the best case solve the problems asymptotically.
This course introduces the latest methods of control under heavy uncertainty conditions, solving the above problems exactly and in finite time, or even in a time fixed in advance. The approach is cited by thousands of papers and has proved itself in robotics, avionics and space flight, signal and image processing, in solving any kinds of targeting and tracking problems.
This course complements the course “Topics in non-linear control”, but does not require it as a prerequisite. The classical notions of stability, relative degree, normal forms, output feedback and observation, the Filippov theory of discontinuous ODEs are briefly introduced. The course covers the homogeneity theory of differential inclusions, nonlinear observation, filtering and robust exact differentiation, finite- and fixed-time stability theory, sliding-mode control theory, practical relative degree and mathematical black-box control. The robustness of methods is validated in the presence of discrete noisy sampling and system disturbances. Digital implementation and discretization methods are considered, and the corresponding accuracies are calculated.
At the end of the course the student is supposed to demonstrate design of a non-linear controller for a simple multi-input-multi-output uncertain system with noisy measurements and to confirm its efficiency by simulation.
Standard basic courses of ordinary differential equations, linear algebra and infinitesimal calculus are sufficient for understanding the course.
The course homepage: http://www.tau.ac.il/~levant/fintime/index.html