| |||||||||||||||||||||||||||||||||||||||||
תורת השדות 1
Field Theory 1 |
0321-4201 | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
מדעים מדויקים | פיסיקה ואסטרונומיה | |||||||||||||||||||||||||||||||||||||||||
|
תורת שדות 1
סמטריות וחוקי שימור , חבורת לורנץ ופואנקרה, שדות חופשים וקוונטיזציה קנונית, אינטגרל על מסלולים, פעולה אפקטיביות ופוטנציאל אפקטיבי, כללי פינמן, אמפליטודות פזור וחתכי פעולה ב- QED.
Quantum Field theory 1- Syllabus
Instructor
Jacob Sonnenschein
Email: cobi@post.tau.ac.il
Academic Year, Semesters
[Msc first year one semester]
Number of Hours/ Credits
[4 weekly hours]
Mandatory/Elective
[mandatory for all elementary particle physics]
Prerequisites
[undergraduate courses in Quantum mechanics I and II
Year in program & how often given, if relevant
Given every year
Course overview – short abstract
The topics of the course are:1. Introduction the problems of QM and the applications of QFT, 2. Lorentz, Poincare and Conformal group 3. Classical field theory symmetry Nother currents and charges 4. The quantization of scalar field 5. Quantum spinor field theory 6. Quantization of Maxwell theory in Coulomb and Covariant gauge 7. Casimir effect 8. Path Integral quantization of scalar field, spinor and gauge field. 9. Derivation of Feynman diagrams for correlators using path intetral. 10. U transformation Wick rotation canonical derivation of F. D. 11. S matrix, LSZ reduction formula 12. Feynman diagrams for scattering amplitudes.
[Author Name]
Learning outcomes – short description (if you don’t have LOs, then don’t write anything in this part)
You might love the look of the classic, professional font in this syllabus as much as we do. But it’s also easy to get exactly the look you want. On the Design tab of the ribbon, check out the Fonts gallery to preview options right in your document and then click to apply one you like.
Assessment: coursework and grade structure
(for example)
Assignments – 50%
Mid exam –
Final exams – 50%
Week-by-week content, assignments and reading
(for example)
Week 1: Lorentz, Poincare and Conformal group, Exercise 1
Week 2: Lorentz, Poincare and Conformal group, Exercise 2
Week 3: Classical Field theory action Equations of motion ex3
Week 4: Symmetry Noether currents and charges, Exercise 4
Week 5: Lorentz, Poincare and Conformal group, Exercise 5
Week 6: Quantum Scalar field theory, Exercise 6
Week 7: Quantum spinor field theory, P,T, C Exercise 7
Week 8: Quantum Maxwell theory Coulomb gauge, covariant gauge, Exercise 8
Week 9: Casimir effect, Path integral quantization, Exercise 9
Week 10: Perturbation theory. Feynman diagrams from Path integral 10
Week 11: U transformation, Wick rotation Exercise11
Week 12: Feynman diagrams for correlators of phi^4 theory and QED Exercise 12
Week 13: U transformation, Wick rotation Canonical derivation of Feynman diagrams Ex13
Week 14: S matrix LSZ reduction formula Feynman diagrams for scattering amplitudes Ex14
Required text – in language of origin (if Hebrew or Arabic, no need to translate it)
Peskin Schroder ``An Introduction to Quantum Field Theory"
Bjorken Drell QFT
Itzykson and Zuber ``Quantum Field Theory"
D. Gross ``Lectures on QFT
Y. Frishman J. Sonnenschein ``Non Perturbative QFT"